Suppr超能文献

基于家系数据的二元表型全基因组关联研究中依赖结构的建模。

Modeling the Dependence Structure in Genome Wide Association Studies of Binary Phenotypes in Family Data.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA.

Department of Psychology, University of Minnesota, Minneapolis, MN, USA.

出版信息

Behav Genet. 2020 Nov;50(6):423-439. doi: 10.1007/s10519-020-10010-2. Epub 2020 Aug 17.

Abstract

Genome-wide association studies (GWASs) are a popular tool for detecting association between genetic variants or single nucleotide polymorphisms (SNPs) and complex traits. Family data introduce complexity due to the non-independence of the family members. Methods for non-independent data are well established, but when the GWAS contains distinct family types, explicit modeling of between-family-type differences in the dependence structure comes at the cost of significantly increased computational burden. The situation is exacerbated with binary traits. In this paper, we perform several simulation studies to compare multiple candidate methods to perform single SNP association analysis with binary traits. We consider generalized estimating equations (GEE), generalized linear mixed models (GLMMs), or generalized least square (GLS) approaches. We study the influence of different working correlation structures for GEE on the GWAS findings and also the performance of different analysis method(s) to conduct a GWAS with binary trait data in families. We discuss the merits of each approach with attention to their applicability in a GWAS. We also compare the performances of the methods on the alcoholism data from the Minnesota Center for Twin and Family Research (MCTFR) study.

摘要

全基因组关联研究(GWAS)是一种用于检测遗传变异或单核苷酸多态性(SNP)与复杂特征之间关联的流行工具。由于家庭成员之间的非独立性,家族数据会带来复杂性。针对非独立数据的方法已经得到很好的建立,但当 GWAS 包含不同的家族类型时,显式建模家族类型之间的依赖性结构差异会显著增加计算负担。这种情况在二元特征中更加严重。在本文中,我们进行了多项模拟研究,比较了多种候选方法,以对二元特征进行单 SNP 关联分析。我们考虑了广义估计方程(GEE)、广义线性混合模型(GLMM)或广义最小二乘法(GLS)方法。我们研究了不同工作相关结构对 GEE 对 GWAS 结果的影响,以及不同分析方法在家族中进行二元特征数据的 GWAS 中的性能。我们讨论了每种方法的优点,并注意到它们在 GWAS 中的适用性。我们还比较了这些方法在明尼苏达州双胞胎和家庭研究中心(MCTFR)研究的酗酒数据上的表现。

相似文献

1
Modeling the Dependence Structure in Genome Wide Association Studies of Binary Phenotypes in Family Data.
Behav Genet. 2020 Nov;50(6):423-439. doi: 10.1007/s10519-020-10010-2. Epub 2020 Aug 17.
2
Single Marker Family-Based Association Analysis Not Conditional on Parental Information.
Methods Mol Biol. 2017;1666:409-439. doi: 10.1007/978-1-4939-7274-6_20.
3
Adaptive SNP-Set Association Testing in Generalized Linear Mixed Models with Application to Family Studies.
Behav Genet. 2018 Jan;48(1):55-66. doi: 10.1007/s10519-017-9883-x. Epub 2017 Nov 17.
4
A rapid gene-based genome-wide association test with multivariate traits.
Hum Hered. 2013;76(2):53-63. doi: 10.1159/000356016. Epub 2013 Nov 13.
6
Joint association analysis of a binary and a quantitative trait in family samples.
Eur J Hum Genet. 2016 Jan;25(1):130-136. doi: 10.1038/ejhg.2016.134. Epub 2016 Oct 26.
7
Retrospective Association Analysis of Longitudinal Binary Traits Identifies Important Loci and Pathways in Cocaine Use.
Genetics. 2019 Dec;213(4):1225-1236. doi: 10.1534/genetics.119.302598. Epub 2019 Oct 7.
8
Analysis of family- and population-based samples in cohort genome-wide association studies.
Hum Genet. 2012 Feb;131(2):275-87. doi: 10.1007/s00439-011-1071-0. Epub 2011 Jul 30.
10

引用本文的文献

1
Efficient estimation of SNP heritability using Gaussian predictive process in large scale cohort studies.
PLoS Genet. 2022 Apr 20;18(4):e1010151. doi: 10.1371/journal.pgen.1010151. eCollection 2022 Apr.

本文引用的文献

1
FedGMMAT: Federated generalized linear mixed model association tests.
PLoS Comput Biol. 2024 Jul 24;20(7):e1012142. doi: 10.1371/journal.pcbi.1012142. eCollection 2024 Jul.
3
Genetic association testing using the GENESIS R/Bioconductor package.
Bioinformatics. 2019 Dec 15;35(24):5346-5348. doi: 10.1093/bioinformatics/btz567.
5
Comparing Genome-Wide Association Study Results from Different Measurements of an Underlying Phenotype.
G3 (Bethesda). 2018 Nov 6;8(11):3715-3722. doi: 10.1534/g3.118.200700.
6
Adaptive SNP-Set Association Testing in Generalized Linear Mixed Models with Application to Family Studies.
Behav Genet. 2018 Jan;48(1):55-66. doi: 10.1007/s10519-017-9883-x. Epub 2017 Nov 17.
7
The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies.
Psychol Med. 2015 Apr;45(5):1061-72. doi: 10.1017/S0033291714002165. Epub 2014 Aug 29.
8
Comparison of methods to account for relatedness in genome-wide association studies with family-based data.
PLoS Genet. 2014 Jul 17;10(7):e1004445. doi: 10.1371/journal.pgen.1004445. eCollection 2014 Jul.
9
UK biobank data: come and get it.
Sci Transl Med. 2014 Feb 19;6(224):224ed4. doi: 10.1126/scitranslmed.3008601.
10
The Minnesota Center for Twin and Family Research genome-wide association study.
Twin Res Hum Genet. 2012 Dec;15(6):767-74. doi: 10.1017/thg.2012.62.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验