Genovese Claudio, Shirakawa Tomonori, Nakano Kousuke, Sorella Sandro
SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.
Computational Materials Science Research Team, RIKEN Center for Computational Science (R-CCS), Kobe, Hyogo 650-0047, Japan.
J Chem Theory Comput. 2020 Oct 13;16(10):6114-6131. doi: 10.1021/acs.jctc.0c00165. Epub 2020 Sep 17.
We propose here a single Pfaffian correlated variational ansatz that dramatically improves the accuracy with respect to the single determinant one, while remaining at a similar computational cost. A much larger correlation energy is indeed determined by the most general two electron pairing function, including both singlet and triplet channels, combined with a many-body Jastrow factor, including all possible spin-spin, spin-density, and density-density terms. The main technical ingredient to exploit this accuracy is the use of the Pfaffian for antisymmetrizing a highly correlated pairing function, thus recovering the Fermi statistics for electrons with an affordable computational cost. Moreover, the application of the diffusion Monte Carlo, within the fixed node approximation, allows us to obtain very accurate binding energies for the first preliminary calculations reported in this study: C, N, and O and the benzene molecule. This is promising and remarkable, considering that they represent extremely difficult molecules even for computationally demanding multideterminant approaches, and opens therefore the way for realistic and accurate electronic simulations with an algorithm scaling at most as the fourth power of the number of electrons.
我们在此提出一种单Pfaffian关联变分假设,它相对于单行列式假设显著提高了精度,同时保持了相似的计算成本。实际上,由最一般的双电子配对函数(包括单重态和三重态通道)与多体Jastrow因子(包括所有可能的自旋 - 自旋、自旋 - 密度和密度 - 密度项)相结合,确定了大得多的关联能。利用这种精度的主要技术要素是使用Pfaffian对高度关联的配对函数进行反对称化,从而以可承受的计算成本恢复电子的费米统计。此外,在固定节点近似下应用扩散蒙特卡罗方法,使我们能够为本研究中报告的首次初步计算获得非常精确的结合能:C、N、O和苯分子。考虑到即使对于计算要求很高的多行列式方法,它们也是极其困难的分子,这是很有前景且引人注目的,因此为以最多与电子数的四次方成比例缩放的算法进行现实且精确的电子模拟开辟了道路。