Genovese Claudio, Sorella Sandro
SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.
J Chem Phys. 2020 Oct 28;153(16):164301. doi: 10.1063/5.0023067.
The molecular dissociation energy has often been explained and discussed in terms of singlet bonds, formed by bounded pairs of valence electrons. In this work, we use a highly correlated resonating valence bond ansatz, providing a consistent paradigm for the chemical bond, where spin fluctuations are shown to play a crucial role. Spin fluctuations are known to be important in magnetic systems and correspond to the zero point motion of the spin waves emerging from a magnetic broken symmetry state. Within our ansatz, a satisfactory description of the carbon dimer is determined by the magnetic interaction of two carbon atoms with antiferromagnetically ordered S = 1 magnetic moments. This is a first step that, thanks to the highly scalable and efficient quantum Monte Carlo techniques, may open the door for understanding challenging complex systems containing atoms with large spins (e.g., transition metals).
分子解离能常常依据由成键价电子对形成的单重键来解释和讨论。在这项工作中,我们使用高度关联的共振价键假设,为化学键提供了一个一致的范式,其中自旋涨落被证明起着关键作用。已知自旋涨落在磁系统中很重要,并且对应于从磁破缺对称态出现的自旋波的零点运动。在我们的假设中,对碳二聚体的令人满意的描述由两个具有反铁磁有序(S = 1)磁矩的碳原子的磁相互作用决定。这是第一步,借助高度可扩展且高效的量子蒙特卡罗技术,可能为理解包含大自旋原子(例如过渡金属)的具有挑战性的复杂系统打开大门。