Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), ECBB, Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France.
Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62 511 Beni-Suef, Egypt.
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):39979-39990. doi: 10.1021/acsami.0c08305. Epub 2020 Aug 26.
Fast and efficient identification of bacterial pathogens in water and biological fluids is an important issue in medical, food safety, and public health concerns that requires low-cost and efficient sensing strategies. Impedimetric sensors are promising tools for monitoring bacteria detection because of their reliability and ease-of-use. We herein report a study on new biointerface-based amphiphilic poly(3-hexylthiophene)--poly(3-triethylene-glycol-thiophene), P3HT--P3TEGT, for label-free impedimetric detection of (). This biointerface is fabricated by the self-assembly of P3HT--P3TEGT into core-shell nanoparticles, which was further decorated with mannose, leading to an easy-to-use solution-processable nanoparticle material for biosensing. The hydrophilic block P3TEGT promotes antifouling and prevents nonspecific interactions, while improving the ionic and electronic transport properties, thus enhancing the electrochemical-sensing capability in aqueous solution. Self-assembly and micelle formation of P3HT--P3TEGT were analyzed by 2D-NMR, Fourier transform infrared, dynamic light scattering, contact angle, and microscopy characterizations. Detection of was characterized and evaluated using electrochemical impedance spectroscopy and optical and scanning electron microscopy techniques. The sensing layer based on the mannose-functionalized P3HT--P3TEGT nanoparticles demonstrates targeting ability toward pili protein with a detection range from 10 to 10 cfu/mL, and its selectivity was studied with Gram(+) bacteria. Application to real samples was performed by detection of bacteria in tap and the Nile water. The approach developed here shows that water/alcohol-processable-functionalized conjugated polymer nanoparticles are suitable for use as electrode materials, which have potential application in fabrication of a low-cost, label-free impedimetric biosensor for the detection of bacteria in water.
快速有效地鉴定水中和生物体液中的细菌病原体是医学、食品安全和公共卫生关注的一个重要问题,这需要低成本和高效的传感策略。基于阻抗的传感器是监测细菌检测的有前途的工具,因为它们具有可靠性和易用性。本文报道了一种基于新生物界面的两亲性聚(3-己基噻吩)-聚(3-三乙二醇噻吩),P3HT-P3TEGT,用于无标记阻抗检测()的研究。这种生物界面是通过 P3HT-P3TEGT 自组装成核壳纳米粒子来构建的,然后进一步用甘露糖修饰,得到一种易于使用的溶液处理纳米颗粒材料,用于生物传感。亲水性嵌段 P3TEGT 促进抗污和防止非特异性相互作用,同时改善离子和电子传输性能,从而提高在水溶液中的电化学传感能力。通过二维 NMR、傅里叶变换红外、动态光散射、接触角和显微镜表征分析了 P3HT-P3TEGT 的自组装和胶束形成。使用电化学阻抗谱和光学及扫描电子显微镜技术对的检测进行了表征和评价。基于甘露糖功能化 P3HT-P3TEGT 纳米粒子的传感层对菌毛蛋白具有靶向能力,检测范围为 10 到 10 cfu/mL,并用革兰氏阳性菌研究了其选择性。通过检测自来水中和尼罗水中的细菌,对实际样品进行了应用。这里开发的方法表明,水/醇可加工功能化共轭聚合物纳米粒子适合用作电极材料,在制造低成本、无标记阻抗生物传感器以检测水中细菌方面具有潜在应用。