Suppr超能文献

基于超薄玻璃的具有氧化锌纳米线和石墨烯量子点的柔性、透明且超灵敏表面声波湿度传感器。

Ultrathin Glass-Based Flexible, Transparent, and Ultrasensitive Surface Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots.

作者信息

Wu Jianhui, Yin Changshuai, Zhou Jian, Li Honglang, Liu Yi, Shen Yiping, Garner Sean, Fu Yongqing, Duan Huigao

机构信息

Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.

CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39817-39825. doi: 10.1021/acsami.0c09962. Epub 2020 Aug 19.

Abstract

Flexible electronic devices are normally based on organic polymer substrate. In this work, an ultrathin glass-based flexible, transparent, and ultrasensitive ZnO/glass surface acoustic wave (SAW) humidity sensor is developed using a composite sensing layer of ZnO nanowires (NWs) and graphene quantum dots (GQDs). It shows much larger effective electromechanical coupling coefficients and signal amplitudes, compared to those of flexible polymer-based SAW devices reported in the literature. Attributed to large specific surface areas of ZnO NWs, large numbers of hydrophilic functional groups of GQDs, as well as the formation of p-n heterojunctions between GQDs and ZnO NWs, the developed ZnO/glass flexible SAW sensor shows an ultrahigh humidity sensitivity of 40.16 kHz/% RH, along with its excellent stability and repeatability. This flexible and transparent SAW sensor has demonstrated insignificant deterioration of humidity sensing performance, when it is bent on a curved surface with a bending angle of 30°, revealing its potential applications for sensing on curved and complex surfaces. The humidity sensing and human breathing detection have further been demonstrated for wearable electronic applications using ultrathin glass-based devices with completely inorganic materials.

摘要

柔性电子设备通常基于有机聚合物基板。在这项工作中,使用氧化锌纳米线(NWs)和石墨烯量子点(GQDs)的复合传感层,开发了一种基于超薄玻璃的柔性、透明且超灵敏的氧化锌/玻璃表面声波(SAW)湿度传感器。与文献中报道的基于柔性聚合物的SAW器件相比,它显示出更大的有效机电耦合系数和信号幅度。由于氧化锌纳米线的大比表面积、石墨烯量子点的大量亲水性官能团,以及石墨烯量子点与氧化锌纳米线之间形成的p-n异质结,所开发的氧化锌/玻璃柔性SAW传感器显示出40.16 kHz/%RH的超高湿度灵敏度,以及出色的稳定性和重复性。当这种柔性透明SAW传感器在弯曲角度为30°的曲面上弯曲时,其湿度传感性能的劣化不明显,这揭示了其在弯曲和复杂表面传感方面的潜在应用。使用完全由无机材料制成的基于超薄玻璃的器件,进一步展示了其在可穿戴电子应用中的湿度传感和人体呼吸检测功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验