Leibniz Institute for Polymer Research, Hohe Straße 6, 01069 Dresden, Germany.
The Australian Synchrotron, Clayton, Victoria 3168, Australia.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):38976-38988. doi: 10.1021/acsami.0c10699. Epub 2020 Aug 18.
Biosourced nanoparticles have a range of desirable properties for therapeutic applications, including biodegradability and low immunogenicity. Glycogen, a natural polysaccharide nanoparticle, has garnered much interest as a component of advanced therapeutic materials. However, functionalizing glycogen for use as a therapeutic material typically involves synthetic approaches that can negatively affect the intrinsic physiological properties of glycogen. Herein, the protein component of glycogen is examined as an anchor point for the photopolymerization of functional poly(-isopropylacrylamide) (PNIPAM) polymers. Oyster glycogen (OG) nanoparticles partially degrade to smaller spherical particles in the presence of protease enzymes, reflecting a population of surface-bound proteins on the polysaccharide. The grafting of PNIPAM to the native protein component of OG produces OG-PNIPAM nanoparticles of ∼45 nm in diameter and 6.2 MDa in molecular weight. PNIPAM endows the nanoparticles with temperature-responsive aggregation properties that are controllable and reversible and that can be removed by the biodegradation of the protein. The OG-PNIPAM nanoparticles retain the native biodegradability of glycogen. Whole blood incubation assays revealed that the OG-PNIPAM nanoparticles have a low cell association and inflammatory response similar to that of OG. The reported strategy provides functionalized glycogen nanomaterials that retain their inherent biodegradability and low immune cell association.
生物源纳米颗粒具有一系列可用于治疗应用的理想特性,包括生物降解性和低免疫原性。糖原是一种天然多糖纳米颗粒,作为先进治疗材料的组成部分引起了广泛关注。然而,为了将糖原用作治疗材料而对其进行功能化通常涉及可能会影响糖原固有生理特性的合成方法。在此,研究了糖原的蛋白质成分作为光聚合功能性聚(异丙基丙烯酰胺)(PNIPAM)聚合物的锚固点。在蛋白酶存在的情况下,牡蛎糖原(OG)纳米颗粒部分降解为较小的球形颗粒,这反映了多糖上存在的表面结合蛋白质。将 PNIPAM 接枝到 OG 的天然蛋白质成分上,可得到直径约为 45nm、分子量为 6.2MDa 的 OG-PNIPAM 纳米颗粒。PNIPAM 赋予纳米颗粒具有可控制和可逆的温度响应聚集特性,并且可以通过蛋白质的生物降解去除。OG-PNIPAM 纳米颗粒保留了糖原的固有生物降解性。全血孵育试验表明,OG-PNIPAM 纳米颗粒具有与 OG 相似的低细胞结合和炎症反应。所报道的策略提供了保留其固有生物降解性和低免疫细胞结合性的功能化糖原纳米材料。