Stamatopoulos Christos, Milionis Athanasios, Ackerl Norbert, Donati Matteo, Leudet de la Vallée Paul, Rudolf von Rohr Philipp, Poulikakos Dimos
ACS Nano. 2020 Oct 27;14(10):12895-12904. doi: 10.1021/acsnano.0c03849. Epub 2020 Aug 6.
Liquid transport (continuous or segmented) in microfluidic platforms typically requires pumping devices or external fields working collaboratively with special fluid properties to enable fluid motion. Natural liquid adhesion on surfaces deters motion and promotes the possibility of liquid or surface contamination. Despite progress, significant advancements are needed before devices for passive liquid propulsion, without the input of external energy and unwanted contamination, become a reality in applications. Here we present an unexplored and facile approach based on the Laplace pressure imbalance, manifesting itself through targeted track texturing, driving passively droplet motion, while maintaining the limited contact of the Cassie-Baxter state on superhydrophobic surfaces. The track topography resembles out-of-plane, backgammon-board, slowly converging microridges decorated with nanotexturing. This design naturally deforms asymmetrically the menisci formed at the bottom of a droplet contacting such tracks and causes a Laplace pressure imbalance that drives droplet motion. We investigate this effect over a range of opening track angles and develop a model to explain and quantify the underlying mechanism of droplet self-propulsion. We further implement the developed topography for applications relevant to microfluidic platform functionalities. We demonstrate control of the rebound angle of vertically impacting droplets, achieve horizontal self-transport to distances up to 65 times the droplet diameter, show significant uphill motion against gravity, and illustrate a self-driven droplet-merging process.
微流控平台中的液体传输(连续或分段)通常需要泵送装置或外部场与特殊的流体特性协同工作,以实现流体运动。液体在表面的自然附着力会阻碍运动,并增加液体或表面污染的可能性。尽管取得了进展,但在无需外部能量输入且无有害污染的被动液体推进装置在实际应用中成为现实之前,仍需要取得重大进展。在此,我们提出了一种基于拉普拉斯压力不平衡的未被探索的简便方法,通过有针对性的轨迹纹理化来体现这种不平衡,从而驱动液滴被动运动,同时在超疏水表面上保持有限的卡西 - 巴克斯特状态接触。轨迹形貌类似于平面外的、类似于西洋双陆棋棋盘的、带有纳米纹理的缓慢收敛微脊。这种设计自然会使接触此类轨迹的液滴底部形成的弯月面不对称变形,并导致拉普拉斯压力不平衡,从而驱动液滴运动。我们在一系列开口轨迹角度范围内研究了这种效应,并建立了一个模型来解释和量化液滴自推进的潜在机制。我们进一步将所开发的形貌应用于与微流控平台功能相关的实际应用中。我们展示了对垂直撞击液滴反弹角度的控制,实现了水平自运输至液滴直径65倍的距离,展示了显著的逆重力向上运动,并演示了一个自驱动的液滴合并过程。