Suppr超能文献

在现实场景中比较 2.4 GHz WiFi FTM 和基于 RSSI 的室内定位方法。

Comparison of 2.4 GHz WiFi FTM- and RSSI-Based Indoor Positioning Methods in Realistic Scenarios.

机构信息

Faculty of Computer Science and Business Information Systems, University of Applied Sciences Würzburg-Schweinfurt, 97070 Würzburg, Germany.

Institute of Medical Informatics, University of Lübeck, 23547 Lübeck, Germany.

出版信息

Sensors (Basel). 2020 Aug 12;20(16):4515. doi: 10.3390/s20164515.

Abstract

With the addition of the Fine Timing Measurement (FTM) protocol in IEEE 802.11-2016, a promising sensor for smartphone-based indoor positioning systems was introduced. FTM enables a Wi-Fi device to estimate the distance to a second device based on the propagation time of the signal. Recently, FTM has gotten more attention from the scientific community as more compatible devices become available. Due to the claimed robustness and accuracy, FTM is a promising addition to the often used Received Signal Strength Indication (RSSI). In this work, we evaluate FTM on the 2.4 GHz band with 20 MHz channel bandwidth in the context of realistic indoor positioning scenarios. For this purpose, we deploy a least-squares estimation method, a probabilistic positioning approach and a simplistic particle filter implementation. Each method is evaluated using FTM and RSSI separately to show the difference of the techniques. Our results show that, although FTM achieves smaller positioning errors compared to RSSI, its error behavior is similar to RSSI. Furthermore, we demonstrate that an empirically optimized correction value for FTM is required to account for the environment. This correction value can reduce the positioning error significantly.

摘要

随着 IEEE 802.11-2016 中新增的 Fine Timing Measurement (FTM) 协议,一种有前途的基于智能手机的室内定位系统传感器应运而生。FTM 使 Wi-Fi 设备能够根据信号的传播时间估算与第二设备的距离。最近,由于越来越多兼容的设备可用,FTM 受到科学界的更多关注。由于声称具有稳健性和准确性,FTM 是对常用的接收信号强度指示 (RSSI) 的有前途的补充。在这项工作中,我们在 2.4GHz 频段和 20MHz 信道带宽下评估了 FTM 在现实室内定位场景中的性能。为此,我们部署了最小二乘估计方法、概率定位方法和简单的粒子滤波实现。每种方法都分别使用 FTM 和 RSSI 进行评估,以展示技术的差异。我们的结果表明,尽管 FTM 与 RSSI 相比实现了更小的定位误差,但它的误差行为与 RSSI 相似。此外,我们证明需要针对环境对 FTM 的经验优化校正值,以减小定位误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/543a/7472118/49190b765555/sensors-20-04515-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验