Suppr超能文献

鉴定一个与自噬相关的基因特征,可以改善肝癌患者的预后。

Identification of an autophagy-related gene signature that can improve prognosis of hepatocellular carcinoma patients.

机构信息

University of Science and Technology of China, Hefei, China.

Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.

出版信息

BMC Cancer. 2020 Aug 17;20(1):771. doi: 10.1186/s12885-020-07277-3.

Abstract

BACKGROUND

Autophagy is a programmed cell degradation mechanism that has been associated with several physiological and pathophysiological processes, including malignancy. Improper induction of autophagy has been proposed to play a pivotal role in the progression of hepatocellular carcinoma (HCC).

METHODS

Univariate Cox regression analysis of overall survival (OS) was performed to identify risk-associated autophagy-related genes (ARGs) in HCC data set from The Cancer Genome Atlas (TCGA). Multivariate cox regression was then performed to develop a risk prediction model for the prognosis of 370 HCC patients. The multi-target receiver operating characteristic (ROC) curve was used to determine the model's accuracy. Besides, the relationship between drug sensitivity and ARGs expression was also examined.

RESULTS

A total of 62 differentially expressed ARGs were identified in HCC patients. Univariate and multivariate regression identified five risk-associated ARGs (HDAC1, RHEB, ATIC, SPNS1 and SQSTM1) that were correlated with OS in HCC patients. Of importance, the risk-associated ARGs were independent risk factors in the multivariate risk model including clinical parameters such as malignant stage (HR = 1.433, 95% CI = 1.293-1.589, P < 0.001). In addition, the area under curve for the prognostic risk model was 0.747, which indicates the high accuracy of the model in prediction of HCC outcomes. Interestingly, the risk-associated ARGs were also correlated with drug sensitivity in HCC cell lines.

CONCLUSION

We developed a novel prognostic risk model by integrating the molecular signature and clinical parameters of HCC, which can effectively predict the outcomes of HCC patients.

摘要

背景

自噬是一种程序性细胞降解机制,与多种生理和病理生理过程有关,包括恶性肿瘤。异常诱导自噬被认为在肝细胞癌(HCC)的进展中起关键作用。

方法

对来自癌症基因组图谱(TCGA)的 HCC 数据集中的总生存期(OS)进行单因素 Cox 回归分析,以确定与自噬相关的风险相关基因(ARGs)。然后进行多因素 cox 回归分析,以建立 370 例 HCC 患者预后的风险预测模型。使用多靶Receiver 操作特征(ROC)曲线来确定模型的准确性。此外,还检查了药物敏感性与 ARG 表达之间的关系。

结果

在 HCC 患者中鉴定出 62 个差异表达的 ARG。单因素和多因素回归分析确定了五个与 HCC 患者 OS 相关的风险相关 ARG(HDAC1、RHEB、ATIC、SPNS1 和 SQSTM1)。重要的是,风险相关 ARG 是包括恶性分期在内的多因素风险模型中的独立危险因素(HR=1.433,95%CI=1.293-1.589,P<0.001)。此外,预后风险模型的曲线下面积为 0.747,表明该模型在预测 HCC 结局方面具有较高的准确性。有趣的是,风险相关 ARG 还与 HCC 细胞系中的药物敏感性相关。

结论

我们通过整合 HCC 的分子特征和临床参数开发了一种新的预后风险模型,该模型可以有效地预测 HCC 患者的结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2764/7433127/a3957b24e220/12885_2020_7277_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验