Münzer Franziska, Lorenz Severin, Yang Jiwoong, Nugraha Taufik Adi, Scalise Emilio, Hyeon Taeghwan, Wippermann Stefan, Bacher Gerd
Werkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-Essen, Bismarckstraße 81, 47057, Duisburg, Germany.
Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
Nat Commun. 2020 Aug 17;11(1):4127. doi: 10.1038/s41467-020-17563-0.
The fundamental bandgap E of a semiconductor-often determined by means of optical spectroscopy-represents its characteristic fingerprint and changes distinctively with temperature. Here, we demonstrate that in magic sized II-VI clusters containing only 26 atoms, a pronounced weakening of the bonds occurs upon optical excitation, which results in a strong exciton-driven shift of the phonon spectrum. As a consequence, a drastic increase of dE/dT (up to a factor of 2) with respect to bulk material or nanocrystals of typical size is found. We are able to describe our experimental data with excellent quantitative agreement from first principles deriving the bandgap shift with temperature as the vibrational entropy contribution to the free energy difference between the ground and optically excited states. Our work demonstrates how in small nanoparticles, photons as the probe medium affect the bandgap-a fundamental semiconductor property.
半导体的基本带隙E(通常通过光谱学手段测定)代表其特征指纹,并随温度发生显著变化。在此,我们证明,在仅包含26个原子的神奇尺寸II-VI团簇中,光激发时会发生明显的键弱化,这导致声子谱发生强烈的激子驱动位移。结果发现,相对于块状材料或典型尺寸的纳米晶体,dE/dT急剧增加(高达2倍)。我们能够从第一性原理出发,以极佳的定量一致性描述我们的实验数据,该原理将带隙随温度的变化推导为振动熵对基态和光激发态之间自由能差的贡献。我们的工作展示了在小纳米颗粒中,作为探测介质的光子如何影响带隙——一种基本的半导体性质。