Suppr超能文献

纳米材料的软表面使声子相互作用增强。

Soft surfaces of nanomaterials enable strong phonon interactions.

机构信息

Laboratory for Nanoelectronics, Department of Information Technology and Electrical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.

Nano TCAD Group, Department of Information Technology and Electrical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.

出版信息

Nature. 2016 Mar 31;531(7596):618-22. doi: 10.1038/nature16977. Epub 2016 Mar 9.

Abstract

Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron-phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10-13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron-phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron-phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon processes permits the rational selection of nanomaterials, their surface treatments, and the design of devices incorporating them.

摘要

声子及其与其他声子、电子或光子的相互作用驱动着材料中的能量增益、损耗和输运。尽管在体单晶半导体中已经测量和计算了声子态密度,但在纳米材料中,声子仍然知之甚少,尽管越来越多的半导体是通过纳米材料自下而上制造的,并且纳米级组件被集成到设备中。在这里,我们使用非弹性中子散射测量和第一性原理分子动力学模拟,定量研究了自下而上制造的半导体的声子特性随晶粒尺寸的变化。我们表明,与微晶体半导体不同,具有纳米晶畴的半导体的声子模式由于这些畴表面的力学软化,表现出降低的对称性和低能量。当声子在半导体器件中与电子耦合时,这些性质变得很重要。尽管最初认为由于电子态的稀缺性和它们的大能量分离,电子与声子的耦合在纳米晶材料中受到抑制,但后来表明,电子-声子耦合很强,允许超过 1 电子伏特每皮秒的高能量耗散率(参考文献 10-13)。尽管对声子在激子动力学中的作用进行了详细的研究,提出了各种关于这些快速跃迁率起源的建议,包括尝试数值计算它们,但纳米材料中电子-声子相互作用的基本问题仍然没有得到解决。通过结合声子的微观和热力学理论以及我们对纳米材料声子性质的发现,我们能够解释并随后实验证实了载流子与陷阱态的强电子-声子耦合和快速多声子跃迁率。对声子过程的这种更好的理解允许对纳米材料、它们的表面处理以及包含它们的器件的设计进行合理选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验