Suppr超能文献

线粒体中的活性 RNA 干扰。

Active RNA interference in mitochondria.

机构信息

State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.

Key Laboratory for RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China.

出版信息

Cell Res. 2021 Feb;31(2):219-228. doi: 10.1038/s41422-020-00394-5. Epub 2020 Aug 17.

Abstract

RNA interference (RNAi) has been thought to be a gene-silencing pathway present in most eukaryotic cells to safeguard the genome against retrotransposition. Small interfering RNAs (siRNAs) have also become a powerful tool for studying gene functions. Given the endosymbiotic hypothesis that mitochondria originated from prokaryotes, mitochondria have been generally assumed to lack active RNAi; however, certain bacteria have Argonaute homologs and various reports suggest the presence of specific microRNAs and nuclear genome (nDNA)-encoded Ago2 in the mitochondria. Here we report that transfected siRNAs are not only able to enter the matrix of mitochondria, but also function there to specifically silence targeted mitochondrial transcripts. The mitoRNAi effect is readily detectable at the mRNA level, but only recordable on relatively unstable proteins, such as the mtDNA-encoded complex IV subunits. We also apply mitoRNAi to directly determine the postulated crosstalk between individual respiratory chain complexes, and our result suggests that the controversial observations previously made in patient-derived cells might result from differential adaptation in different cell lines. Our findings bring a new tool to study mitochondrial biology.

摘要

RNA 干扰 (RNAi) 被认为是一种存在于大多数真核细胞中的基因沉默途径,可保护基因组免受逆转录转座的影响。小干扰 RNA (siRNA) 也已成为研究基因功能的有力工具。鉴于线粒体起源于原核生物的内共生假说,人们普遍认为线粒体缺乏活跃的 RNAi;然而,某些细菌具有 Argonaute 同源物,并且有各种报道表明存在特定的 microRNA 和核基因组 (nDNA) 编码的 Ago2 在线粒体中。在这里,我们报告转染的 siRNA 不仅能够进入线粒体基质,而且还能在那里发挥作用,特异性地沉默靶向线粒体转录物。mitoRNAi 效应在 mRNA 水平上很容易检测到,但只能在相对不稳定的蛋白质上记录,例如 mtDNA 编码的复合物 IV 亚基。我们还将 mitoRNAi 应用于直接确定单个呼吸链复合物之间假定的串扰,我们的结果表明,以前在患者来源的细胞中观察到的有争议的观察结果可能是由于不同细胞系的差异适应所致。我们的发现为研究线粒体生物学带来了一种新工具。

相似文献

1
Active RNA interference in mitochondria.线粒体中的活性 RNA 干扰。
Cell Res. 2021 Feb;31(2):219-228. doi: 10.1038/s41422-020-00394-5. Epub 2020 Aug 17.
6
Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells.检测哺乳动物癌细胞中线粒体中的 PIWI 和 piRNAs。
Biochem Biophys Res Commun. 2014 Mar 28;446(1):218-23. doi: 10.1016/j.bbrc.2014.02.112. Epub 2014 Mar 3.

引用本文的文献

1
The roles of subcellular Argonaute 2 in cardiovascular diseases.亚细胞 Argonaute 2 在心血管疾病中的作用。
J Transl Int Med. 2025 Jul 30;13(4):328-337. doi: 10.1515/jtim-2025-0036. eCollection 2025 Aug.
5
Functions and applications of RNA interference and small regulatory RNAs.RNA干扰和小调节RNA的功能及应用。
Acta Biochim Biophys Sin (Shanghai). 2024 Nov 18;57(1):119-130. doi: 10.3724/abbs.2024196.

本文引用的文献

2
The Multiple Levels of Mitonuclear Coregulation.线粒体与细胞核的多层次互作调控
Annu Rev Genet. 2018 Nov 23;52:511-533. doi: 10.1146/annurev-genet-120417-031709. Epub 2018 Sep 19.
4
The Origin and Diversification of Mitochondria.线粒体的起源与多样化。
Curr Biol. 2017 Nov 6;27(21):R1177-R1192. doi: 10.1016/j.cub.2017.09.015.
5
Architecture of Human Mitochondrial Respiratory Megacomplex IIIIIV.人类线粒体呼吸超级复合物 IIIIIV 的结构。
Cell. 2017 Sep 7;170(6):1247-1257.e12. doi: 10.1016/j.cell.2017.07.050. Epub 2017 Aug 24.
7
Mitochondrial Machineries for Protein Import and Assembly.线粒体蛋白输入与组装的分子机制
Annu Rev Biochem. 2017 Jun 20;86:685-714. doi: 10.1146/annurev-biochem-060815-014352. Epub 2017 Mar 15.
8
9
The architecture of the mammalian respirasome.哺乳动物呼吸体的结构
Nature. 2016 Sep 29;537(7622):639-43. doi: 10.1038/nature19359.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验