Suppr超能文献

乳腺癌的超级变体鉴定。

Supervariants identification for breast cancer.

机构信息

Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut.

出版信息

Genet Epidemiol. 2020 Nov;44(8):934-947. doi: 10.1002/gepi.22350. Epub 2020 Aug 17.

Abstract

In genome-wide association studies, signals associated with rare variants and interactions between genes are hard to detect even when the sample size is in tens of thousands. To overcome these problems, we examine the concept of supervariant. Like the classic concept of the gene, a supervariant is a combination of alleles in multiple loci, but the contributing loci can be anywhere in the genome. We hypothesize that supervariants are easy to detect and the aggregated signals are more stable in their associations with the disease than that from a single nucleoid polymorphism. Using the UK Biobank databases, we develop a ranking and aggregation method for identifying supervariants. Specifically, we examine 9,377 breast cancer cases with 46,861 controls matched by sex and age. In our simulations, the use of supervariants outperforms single-nucleotide polymorphism-based association method in detecting rare variants and signals with interactive structure. In real data analysis, we identify supervariants on Chromosomes 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 16, and 22 which cover previously reported loci that have associations with breast or other cancers, and several novel loci on Chromosomes 2, 5, 9, and 12. These findings demonstrate the validity of supervariants and its potential of discovering replicable and novel results for complex disease.

摘要

在全基因组关联研究中,即使样本量达到数万,也很难检测到与罕见变异和基因相互作用相关的信号。为了克服这些问题,我们研究了超级变体的概念。与经典的基因概念一样,超级变体是多个基因座中等位基因的组合,但贡献的基因座可以位于基因组的任何地方。我们假设超级变体易于检测,并且与疾病的关联的聚合信号比单一核碱基多态性更稳定。使用英国生物库数据库,我们开发了一种识别超级变体的排名和聚合方法。具体来说,我们检查了 9377 例乳腺癌病例和 46861 例性别和年龄匹配的对照。在我们的模拟中,使用超级变体在检测罕见变异和具有交互结构的信号方面优于基于单核苷酸多态性的关联方法。在真实数据分析中,我们在染色体 1、2、3、5、6、7、8、9、10、11、16 和 22 上识别出超级变体,这些超级变体涵盖了先前报道的与乳腺癌或其他癌症相关的基因座,以及染色体 2、5、9 和 12 上的几个新基因座。这些发现证明了超级变体的有效性及其发现复杂疾病可重复和新颖结果的潜力。

相似文献

1
Supervariants identification for breast cancer.
Genet Epidemiol. 2020 Nov;44(8):934-947. doi: 10.1002/gepi.22350. Epub 2020 Aug 17.
3
Super-variants identification for brain connectivity.
Hum Brain Mapp. 2021 Apr 1;42(5):1304-1312. doi: 10.1002/hbm.25294. Epub 2020 Nov 24.
9
Predicting signatures of "synthetic associations" and "natural associations" from empirical patterns of human genetic variation.
PLoS Comput Biol. 2012;8(7):e1002600. doi: 10.1371/journal.pcbi.1002600. Epub 2012 Jul 5.
10
A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes.
Am J Hum Genet. 2023 Jun 1;110(6):950-962. doi: 10.1016/j.ajhg.2023.04.005. Epub 2023 May 9.

引用本文的文献

1
2
A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer.
Am J Hum Genet. 2024 Jun 6;111(6):1100-1113. doi: 10.1016/j.ajhg.2024.04.010. Epub 2024 May 10.
4
Deep learning identified genetic variants for COVID-19-related mortality among 28,097 affected cases in UK Biobank.
Genet Epidemiol. 2023 Apr;47(3):215-230. doi: 10.1002/gepi.22515. Epub 2023 Jan 24.
5
Super-taxon in human microbiome are identified to be associated with colorectal cancer.
BMC Bioinformatics. 2022 Jun 21;23(1):243. doi: 10.1186/s12859-022-04786-9.
6
Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data.
Hum Genomics. 2021 Feb 3;15(1):10. doi: 10.1186/s40246-021-00306-7.
7
Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data.
medRxiv. 2020 Nov 9:2020.11.05.20226761. doi: 10.1101/2020.11.05.20226761.

本文引用的文献

1
Long noncoding RNA CASC21 exerts an oncogenic role in colorectal cancer through regulating miR-7-5p/YAP1 axis.
Biomed Pharmacother. 2020 Jan;121:109628. doi: 10.1016/j.biopha.2019.109628. Epub 2019 Nov 12.
3
Linc01194 acts as an oncogene in colorectal carcinoma and is associated with poor survival outcome.
Cancer Manag Res. 2019 Mar 22;11:2349-2362. doi: 10.2147/CMAR.S189189. eCollection 2019.
4
Interaction of antioxidant gene variants and susceptibility to type 2 diabetes mellitus.
Br J Biomed Sci. 2019 Oct;76(4):166-171. doi: 10.1080/09674845.2019.1595869. Epub 2019 May 21.
6
The UK Biobank resource with deep phenotyping and genomic data.
Nature. 2018 Oct;562(7726):203-209. doi: 10.1038/s41586-018-0579-z. Epub 2018 Oct 10.
7
Association between lncRNA CASC8 polymorphisms and the risk of cancer: a meta-analysis.
Cancer Manag Res. 2018 Aug 31;10:3141-3148. doi: 10.2147/CMAR.S170783. eCollection 2018.
9
Risk, Prediction and Prevention of Hereditary Breast Cancer - Large-Scale Genomic Studies in Times of Big and Smart Data.
Geburtshilfe Frauenheilkd. 2018 May;78(5):481-492. doi: 10.1055/a-0603-4350. Epub 2018 Jun 4.
10
Red and processed meat consumption and breast cancer: UK Biobank cohort study and meta-analysis.
Eur J Cancer. 2018 Feb;90:73-82. doi: 10.1016/j.ejca.2017.11.022. Epub 2017 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验