Suppr超能文献

多组织、基于剪接的联合转录组全基因组关联研究鉴定乳腺癌易感基因。

A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer.

机构信息

Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA.

Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.

出版信息

Am J Hum Genet. 2024 Jun 6;111(6):1100-1113. doi: 10.1016/j.ajhg.2024.04.010. Epub 2024 May 10.

Abstract

Splicing-based transcriptome-wide association studies (splicing-TWASs) of breast cancer have the potential to identify susceptibility genes. However, existing splicing-TWASs test the association of individual excised introns in breast tissue only and thus have limited power to detect susceptibility genes. In this study, we performed a multi-tissue joint splicing-TWAS that integrated splicing-TWAS signals of multiple excised introns in each gene across 11 tissues that are potentially relevant to breast cancer risk. We utilized summary statistics from a meta-analysis that combined genome-wide association study (GWAS) results of 424,650 women of European ancestry. Splicing-level prediction models were trained in GTEx (v.8) data. We identified 240 genes by the multi-tissue joint splicing-TWAS at the Bonferroni-corrected significance level; in the tissue-specific splicing-TWAS that combined TWAS signals of excised introns in genes in breast tissue only, we identified nine additional significant genes. Of these 249 genes, 88 genes in 62 loci have not been reported by previous TWASs, and 17 genes in seven loci are at least 1 Mb away from published GWAS index variants. By comparing the results of our splicing-TWASs with previous gene-expression-based TWASs that used the same summary statistics and expression prediction models trained in the same reference panel, we found that 110 genes in 70 loci that are identified only by the splicing-TWASs. Our results showed that for many genes, expression quantitative trait loci (eQTL) did not show a significant impact on breast cancer risk, whereas splicing quantitative trait loci (sQTL) showed a strong impact through intron excision events.

摘要

基于剪接的全转录组关联研究(splicing-TWAS)有可能识别易感性基因。然而,现有的 splicing-TWAS 仅检测乳腺组织中单个切除内含子的关联,因此检测易感性基因的能力有限。在这项研究中,我们进行了多组织联合 splicing-TWAS,整合了跨 11 种可能与乳腺癌风险相关的组织中每个基因的多个切除内含子的 splicing-TWAS 信号。我们利用了一项荟萃分析的汇总统计数据,该分析综合了 424650 名欧洲血统女性的全基因组关联研究(GWAS)结果。剪接水平的预测模型是在 GTEx(v.8)数据中进行训练的。我们通过多组织联合 splicing-TWAS 在 Bonferroni 校正的显著性水平上确定了 240 个基因;在仅结合乳腺组织中基因切除内含子 TWAS 信号的组织特异性 splicing-TWAS 中,我们确定了另外 9 个显著基因。在这 249 个基因中,62 个基因座中的 88 个基因尚未被以前的 TWAS 报道,7 个基因座中的 17 个基因距离已发表的 GWAS 索引变异体至少 1Mb。通过将我们的 splicing-TWAS 结果与以前使用相同汇总统计数据和在相同参考面板中训练的基于基因表达的 TWAS 结果进行比较,我们发现 70 个基因座中的 110 个基因仅通过 splicing-TWAS 识别。我们的结果表明,对于许多基因,表达数量性状基因座(eQTL)对乳腺癌风险没有显著影响,而剪接数量性状基因座(sQTL)通过内含子切除事件显示出强烈的影响。

相似文献

6
Statistical power of transcriptome-wide association studies.转录组关联研究的统计功效。
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验