Jiang Xiaowen, Jin Hui, Gui Rijun
College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P.R. China.
Dalton Trans. 2020 Sep 1;49(34):11911-11920. doi: 10.1039/d0dt02272a.
In this work, emerging metal ion-coordinated black phosphorus nanosheets (M@BPNSs) and quantum dots (M@BPQDs) were prepared via the sonication-assisted liquid-phase exfoliation of bulk black phosphorus (BP) crystals in the presence of a metal ion (M) and solvothermal reaction of the exfoliated few-layer M@BP nanosheets. Based on theoretical calculations, a bonding mode exists between M and BP. Consequently, the adsorption energies of M on BP via the bonding mode are lower than that of M on BP via the non-bonding mode. Under the bonding mode, the adsorption energy of Zn2+ (-2.04 eV) on BP is lower than other M. Zn2+, serves as the preferred M and can be easily adsorbed on the surface of BP. We experimentally prepared emerging M@BPNSs and M@BPQDs, characterized, and compared various morphologies, microstructures and spectra under different conditions. It is verified, that the surface coordination of M with BP protects BP from oxidization and degradation of its nanostructures upon exposure to O2 and H2O. In comparison to the bare BPNSs, Zn@BPNSs showed high microstructural stability. Moreover, in comparison to bare BPQDs, Zn@BPQDs exhibited high colloidal stability and excellent stabilities with fluorescence and photothermal conversion performances. The long-term stabilities are due to the M-coordination with BP through P-M bonding on BP nanostructures. Thus, the excellent long-term stabilities in microstructure, fluorescence and photothermal conversion levels endow the emerging two-dimensional M@BPNSs and zero-dimensional M@BPQDs with great prospects towards promising applications, especially in electronics, optoelectronics, optical and biomedical fields.
在本工作中,通过在金属离子(M)存在下对块状黑磷(BP)晶体进行超声辅助液相剥离以及对剥离后的少层M@BP纳米片进行溶剂热反应,制备了新型金属离子配位的黑磷纳米片(M@BPNSs)和量子点(M@BPQDs)。基于理论计算,M与BP之间存在一种键合模式。因此,M通过键合模式在BP上的吸附能低于其通过非键合模式在BP上的吸附能。在键合模式下,Zn2+在BP上的吸附能(-2.04 eV)低于其他M。Zn2+作为首选的M,能够很容易地吸附在BP表面。我们通过实验制备了新型M@BPNSs和M@BPQDs,对其进行了表征,并比较了不同条件下的各种形貌、微观结构和光谱。结果证实,M与BP的表面配位保护了BP在暴露于O2和H2O时不被氧化及其纳米结构不被降解。与裸露的BPNSs相比,Zn@BPNSs表现出高的微观结构稳定性。此外,与裸露的BPQDs相比,Zn@BPQDs表现出高的胶体稳定性以及优异的荧光和光热转换性能稳定性。长期稳定性归因于M通过BP纳米结构上的P-M键与BP配位。因此,在微观结构、荧光和光热转换水平方面优异的长期稳定性赋予了新型二维M@BPNSs和零维M@BPQDs在有前景的应用中,特别是在电子、光电子、光学和生物医学领域,具有巨大的应用前景。