Suppr超能文献

硼催化四卤化碳的羰基化反应:利用广泛的可见光合成多种羰基化合物。

B-Catalyzed Carbonylation of Carbon Tetrahalides: Using a Broad Range of Visible Light to Access Diverse Carbonyl Compounds.

作者信息

Shichijo Keita, Tanaka Miho, Kametani Yohei, Shiota Yoshihito, Fujitsuka Mamoru, Shimakoshi Hisashi

机构信息

Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Motooka, Fukuoka 744, 819-0395, Japan.

Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Motooka, Fukuoka 744, 819-0395, Japan.

出版信息

Chemistry. 2025 Jan 9;31(2):e202403663. doi: 10.1002/chem.202403663. Epub 2024 Nov 18.

Abstract

Visible-light-driven organic synthesis is a green and sustainable method for producing fine chemicals and is highly desirable at both laboratory and industrial scales. In this study, we developed a broad-range (including the red region) visible-light-driven carbonylation of CCl, CBr, and CBrF with nucleophiles, such as amines and alcohols, using a B-Mg/TiO hybrid catalyst. Carbonyl molecules such as ureas, carbamates, carbonate esters, and carbamoyl fluorides were synthesized with high selectivity and efficiency under mild conditions. Diffuse reflectance UV-vis spectroscopy, femtosecond time-resolved diffuse reflectance spectroscopy, and density functional theory calculations revealed the reaction mechanism is a combination of S2 and single-electron transfer. This is a rare example of a low-energy, red-light-driven photocatalysis, which has been a highly desired organic reaction in recent years. We believe that this study provides a general platform to access diverse carbonyl molecules and could promote photocatalytic carbonylation reactions on a pilot scale.

摘要

可见光驱动的有机合成是一种绿色可持续的精细化学品生产方法,在实验室和工业规模上都备受青睐。在本研究中,我们使用B-Mg/TiO杂化催化剂,开发了一种广泛范围(包括红色区域)的可见光驱动的CCl、CBr和CBrF与亲核试剂(如胺和醇)的羰基化反应。在温和条件下,脲、氨基甲酸酯、碳酸酯和氨基甲酰氟等羰基分子以高选择性和高效率合成。漫反射紫外可见光谱、飞秒时间分辨漫反射光谱和密度泛函理论计算表明,反应机理是S2和单电子转移的结合。这是一个罕见的低能量、红光驱动光催化的例子,这是近年来备受期待的有机反应。我们相信,这项研究提供了一个获得各种羰基分子的通用平台,并有望推动中试规模的光催化羰基化反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67ad/11724252/e56586b49885/CHEM-31-e202403663-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验