Chen Weike, Li Shuxin, Lang John C, Chang Yan, Pan Zui, Kroll Peter, Sun Xiankai, Tang Liping, Dong He
Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76019, USA.
Small. 2020 Sep;16(38):e2002780. doi: 10.1002/smll.202002780. Epub 2020 Aug 18.
Many new technologies, such as cancer microenvironment-induced nanoparticle targeting and multivalent ligand approach for cell surface receptors, are developed for active targeting in cancer therapy. While the principle of each technology is well illustrated, most systems suffer from low targeting specificity and sensitivity. To fill the gap, this work demonstrates a successful attempt to combine both technologies to simultaneously improve cancer cell targeting sensitivity and specificity. Specifically, the main component is a targeting ligand conjugated self-assembling monomer precursor (SAM-P), which, at the tumor site, undergoes tumor-triggered cleavage to release the active form of self-assembling monomer capable of forming supramolecular nanostructures. Biophysical characterization confirms the chemical and physical transformation of SAM-P from unimers or oligomers with low ligand valency to supramolecular assemblies with high ligand valency under a tumor-mimicking reductive microenvironment. The in vitro fluorescence assay shows the importance of supramolecular morphology in mediating ligand-receptor interactions and targeting sensitivity. Enhanced targeting specificity and sensitivity can be achieved via tumor-triggered supramolecular assembly and induces multivalent ligand presentation toward cell surface receptors, respectively. The results support this combined tumor microenvironment-induced cell targeting and multivalent ligand display approach, and have great potential for use as cell-specific molecular imaging and therapeutic agents with high sensitivity and specificity.
许多新技术,如癌症微环境诱导的纳米颗粒靶向和用于细胞表面受体的多价配体方法,已被开发用于癌症治疗中的主动靶向。虽然每种技术的原理都有很好的阐述,但大多数系统的靶向特异性和敏感性较低。为了填补这一空白,这项工作展示了将这两种技术结合起来以同时提高癌细胞靶向敏感性和特异性的成功尝试。具体而言,主要成分是一种与靶向配体共轭的自组装单体前体(SAM-P),它在肿瘤部位经历肿瘤触发的裂解,以释放能够形成超分子纳米结构的自组装单体的活性形式。生物物理表征证实了在模拟肿瘤的还原微环境下,SAM-P从低配体价态的单体或寡聚体化学和物理转化为高配体价态的超分子聚集体。体外荧光测定表明超分子形态在介导配体-受体相互作用和靶向敏感性方面的重要性。分别通过肿瘤触发的超分子组装和诱导向细胞表面受体呈现多价配体,可以实现增强的靶向特异性和敏感性。这些结果支持这种结合肿瘤微环境诱导的细胞靶向和多价配体展示的方法,并且作为具有高敏感性和特异性的细胞特异性分子成像和治疗剂具有巨大的应用潜力。