Suppr超能文献

调控脂质组成可使变温动物酰基链饱和度维持在合理水平。

Regulating Lipid Composition Rationalizes Acyl Tail Saturation Homeostasis in Ectotherms.

机构信息

Max Planck Institute for Polymer Research, Mainz, Germany.

Max Planck Institute for Polymer Research, Mainz, Germany; Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam, the Netherlands.

出版信息

Biophys J. 2020 Sep 1;119(5):892-899. doi: 10.1016/j.bpj.2020.07.024. Epub 2020 Aug 6.

Abstract

Cell membranes mainly consist of lipid bilayers with an actively regulated composition. The underlying processes are still poorly understood, in particular, how the hundreds of components are controlled. Cholesterol has been found to correlate with phospholipid saturation for reasons that remain unclear. To better understand the link between cell membrane regulation and chemical composition, we establish a computational framework based on chemical reaction networks, resulting in multiple semigrand canonical ensembles. By running computer simulations, we show that regulating the chemical potential of lipid species is sufficient to reproduce the experimentally observed increase in acyl tail saturation with added cholesterol. Our model proposes a different picture of lipid regulation in which components can be regulated passively instead of actively. In this picture, phospholipid acyl tail composition naturally adapts to added molecules such as cholesterol or proteins. A comparison between regulated membranes with commonly studied ternary model membranes shows stark differences: for instance, correlation lengths and viscosities observed are independent of lipid chemical affinity.

摘要

细胞膜主要由脂质双层组成,其组成具有活跃的调节作用。然而,其中的底层过程仍未被充分理解,特别是数百种成分是如何被控制的。胆固醇与磷脂的饱和度之间存在相关性,但具体原因尚不清楚。为了更好地理解细胞膜调节与化学组成之间的联系,我们建立了一个基于化学反应网络的计算框架,从而得到了多个半巨正则系综。通过计算机模拟,我们发现调节脂质种类的化学势足以再现实验观察到的随着胆固醇的加入酰基尾饱和度增加的现象。我们的模型提出了一种不同的脂质调节观点,其中组成成分可以被动调节而不是主动调节。在这种观点中,磷脂酰基尾组成会自然地适应添加的分子,如胆固醇或蛋白质。调节膜与常用的三元模型膜之间的比较显示出明显的差异:例如,观察到的相关长度和粘度与脂质化学亲和力无关。

相似文献

1
Regulating Lipid Composition Rationalizes Acyl Tail Saturation Homeostasis in Ectotherms.
Biophys J. 2020 Sep 1;119(5):892-899. doi: 10.1016/j.bpj.2020.07.024. Epub 2020 Aug 6.
3
The effects of oxidised phospholipids and cholesterol on the biophysical properties of POPC bilayers.
Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):210-219. doi: 10.1016/j.bbamem.2018.07.012. Epub 2018 Jul 25.
5
Computer simulations of lipid regulation by molecular semigrand canonical ensembles.
Biophys J. 2021 Jun 15;120(12):2370-2373. doi: 10.1016/j.bpj.2021.04.025. Epub 2021 May 1.
6
Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics.
J Phys Chem B. 2016 Nov 17;120(45):11761-11772. doi: 10.1021/acs.jpcb.6b08574. Epub 2016 Nov 7.
7
Structure and Dynamics of the Acyl Chains in the Membrane Trafficking and Enzymatic Processing of Lipids.
Acc Chem Res. 2019 Nov 19;52(11):3087-3096. doi: 10.1021/acs.accounts.9b00134. Epub 2019 Jul 31.
9
Impact of Acyl Chain Mismatch on the Formation and Properties of Sphingomyelin-Cholesterol Domains.
Biophys J. 2019 Nov 5;117(9):1577-1588. doi: 10.1016/j.bpj.2019.09.025. Epub 2019 Sep 25.

引用本文的文献

1
Induced asymmetries in membranes.
Biophys J. 2023 Jun 6;122(11):2092-2098. doi: 10.1016/j.bpj.2022.12.004. Epub 2022 Dec 6.
2
A Brain-Penetrant Stearoyl-CoA Desaturase Inhibitor Reverses α-Synuclein Toxicity.
Neurotherapeutics. 2022 Apr;19(3):1018-1036. doi: 10.1007/s13311-022-01199-7. Epub 2022 Apr 20.
3
Finite-size transitions in complex membranes.
Biophys J. 2021 Jun 15;120(12):2436-2443. doi: 10.1016/j.bpj.2021.03.043. Epub 2021 May 4.
4
Computer simulations of lipid regulation by molecular semigrand canonical ensembles.
Biophys J. 2021 Jun 15;120(12):2370-2373. doi: 10.1016/j.bpj.2021.04.025. Epub 2021 May 1.
5
The Membrane "Pull" That Balances Metabolism's "Push" in Lipid Homeostasis.
Biophys J. 2020 Sep 1;119(5):887-889. doi: 10.1016/j.bpj.2020.07.025. Epub 2020 Aug 5.

本文引用的文献

1
Emerging Diversity in Lipid-Protein Interactions.
Chem Rev. 2019 May 8;119(9):5775-5848. doi: 10.1021/acs.chemrev.8b00451. Epub 2019 Feb 13.
2
Regimes of Complex Lipid Bilayer Phases Induced by Cholesterol Concentration in MD Simulation.
Biophys J. 2018 Dec 4;115(11):2167-2178. doi: 10.1016/j.bpj.2018.10.011. Epub 2018 Oct 19.
3
Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes.
Nat Rev Mol Cell Biol. 2019 Feb;20(2):85-101. doi: 10.1038/s41580-018-0071-5.
4
Lipid-Protein Interactions Are Unique Fingerprints for Membrane Proteins.
ACS Cent Sci. 2018 Jun 27;4(6):709-717. doi: 10.1021/acscentsci.8b00143. Epub 2018 Jun 13.
5
Understanding the diversity of membrane lipid composition.
Nat Rev Mol Cell Biol. 2018 May;19(5):281-296. doi: 10.1038/nrm.2017.138. Epub 2018 Feb 7.
6
Miscibility Transition Temperature Scales with Growth Temperature in a Zebrafish Cell Line.
Biophys J. 2017 Sep 19;113(6):1212-1222. doi: 10.1016/j.bpj.2017.04.052. Epub 2017 May 25.
7
Soft Matter in Lipid-Protein Interactions.
Annu Rev Biophys. 2017 May 22;46:379-410. doi: 10.1146/annurev-biophys-070816-033843.
8
Lipid and Peptide Diffusion in Bilayers: The Saffman-Delbrück Model and Periodic Boundary Conditions.
J Phys Chem B. 2017 Apr 20;121(15):3443-3457. doi: 10.1021/acs.jpcb.6b09111. Epub 2017 Jan 6.
9
Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes.
Biochim Biophys Acta Biomembr. 2017 Apr;1859(4):509-528. doi: 10.1016/j.bbamem.2016.10.021. Epub 2016 Nov 5.
10
There Is No Simple Model of the Plasma Membrane Organization.
Front Cell Dev Biol. 2016 Sep 29;4:106. doi: 10.3389/fcell.2016.00106. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验