Department of Physics, Brandeis University, Waltham, MA 02454.
Department of Physics, Brandeis University, Waltham, MA 02454;
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21354-21363. doi: 10.1073/pnas.2002126117. Epub 2020 Aug 17.
One of the hallmarks of DNA damage is the rapid spreading of phosphorylated histone H2A (γ-H2AX) around a DNA double-strand break (DSB). In the budding yeast , nearly all H2A isoforms can be phosphorylated, either by Mec1 or Tel1 checkpoint kinases. We induced a site-specific DSB with HO endonuclease at the locus on chromosome III and monitored the formation of γ-H2AX by chromatin immunoprecipitation (ChIP)-qPCR in order to uncover the mechanisms by which Mec1 and Tel1 propagate histone modifications across chromatin. With either kinase, γ-H2AX spreads as far as ∼50 kb on both sides of the lesion within 1 h; but the kinetics and distribution of modification around the DSB are significantly different. The total accumulation of phosphorylation is reduced by about half when either of the two H2A genes is mutated to the nonphosphorylatable S129A allele. Mec1 activity is limited by the abundance of its ATRIP partner, Ddc2. Moreover, Mec1 is more efficient than Tel1 at phosphorylating chromatin in -at distant undamaged sites that are brought into physical proximity to the DSB. We compared experimental data to mathematical models of spreading mechanisms to determine whether the kinases search for target nucleosomes by primarily moving in three dimensions through the nucleoplasm or in one dimension along the chromatin. Bayesian model selection indicates that Mec1 primarily uses a three-dimensional diffusive mechanism, whereas Tel1 undergoes directed motion along the chromatin.
DNA 损伤的一个标志是磷酸化组蛋白 H2A(γ-H2AX)在 DNA 双链断裂(DSB)周围迅速扩散。在 budding yeast 中,几乎所有的 H2A 同工型都可以被 Mec1 或 Tel1 检查点激酶磷酸化。我们用 HO 内切酶在染色体 III 上的 位点诱导一个特异性的 DSB,并通过染色质免疫沉淀(ChIP)-qPCR 监测 γ-H2AX 的形成,以揭示 Mec1 和 Tel1 如何在染色质上传播组蛋白修饰的机制。在这两种激酶中,γ-H2AX 在 1 小时内从损伤点的两侧扩散到 50kb 左右;但修饰在 DSB 周围的动力学和分布有显著差异。当两个 H2A 基因中的任何一个突变为非磷酸化的 S129A 等位基因时,磷酸化的总积累减少了约一半。Mec1 的活性受到其 ATRIP 伴侣 Ddc2 的丰度限制。此外,Mec1 比 Tel1 更有效地在 -处的远离未受损的位点磷酸化染色质,这些位点被物理上拉近到 DSB。我们将实验数据与扩散机制的数学模型进行了比较,以确定激酶是否主要通过核质中的三维运动或沿着染色质的一维运动来寻找靶核小体。贝叶斯模型选择表明,Mec1 主要使用三维扩散机制,而 Tel1 沿着染色质进行定向运动。