Hartono Noor Titan Putri, Thapa Janak, Tiihonen Armi, Oviedo Felipe, Batali Clio, Yoo Jason J, Liu Zhe, Li Ruipeng, Marrón David Fuertes, Bawendi Moungi G, Buonassisi Tonio, Sun Shijing
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Nat Commun. 2020 Aug 20;11(1):4172. doi: 10.1038/s41467-020-17945-4.
Environmental stability of perovskite solar cells (PSCs) has been improved by trial-and-error exploration of thin low-dimensional (LD) perovskite deposited on top of the perovskite absorber, called the capping layer. In this study, a machine-learning framework is presented to optimize this layer. We featurize 21 organic halide salts, apply them as capping layers onto methylammonium lead iodide (MAPbI) films, age them under accelerated conditions, and determine features governing stability using supervised machine learning and Shapley values. We find that organic molecules' low number of hydrogen-bonding donors and small topological polar surface area correlate with increased MAPbI film stability. The top performing organic halide, phenyltriethylammonium iodide (PTEAI), successfully extends the MAPbI stability lifetime by 4 ± 2 times over bare MAPbI and 1.3 ± 0.3 times over state-of-the-art octylammonium bromide (OABr). Through characterization, we find that this capping layer stabilizes the photoactive layer by changing the surface chemistry and suppressing methylammonium loss.
通过对沉积在钙钛矿吸收层顶部的薄低维(LD)钙钛矿(称为封盖层)进行反复试验探索,钙钛矿太阳能电池(PSC)的环境稳定性得到了改善。在本研究中,提出了一种机器学习框架来优化该层。我们对21种有机卤化物盐进行特征化处理,将它们作为封盖层应用于甲基碘化铅(MAPbI)薄膜上,在加速条件下使其老化,并使用监督机器学习和夏普利值确定影响稳定性的特征。我们发现有机分子的氢键供体数量少和拓扑极性表面积小与MAPbI薄膜稳定性的提高相关。表现最佳的有机卤化物碘化苯基三乙铵(PTEAI)成功地将MAPbI的稳定寿命延长至裸MAPbI的4±2倍,以及最先进的溴化辛基铵(OABr)的1.3±0.3倍。通过表征,我们发现该封盖层通过改变表面化学性质和抑制甲基铵损失来稳定光活性层。