Suppr超能文献

一种使用改进的基于模型本质特征的自动睡眠阶段分类算法。

An Automatic Sleep Stage Classification Algorithm Using Improved Model Based Essence Features.

机构信息

School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.

Faculty of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA.

出版信息

Sensors (Basel). 2020 Aug 19;20(17):4677. doi: 10.3390/s20174677.

Abstract

The automatic sleep stage classification technique can facilitate the diagnosis of sleep disorders and release the medical expert from labor-consumption work. In this paper, novel improved model based essence features (IMBEFs) were proposed combining locality energy (LE) and dual state space models (DSSMs) for automatic sleep stage detection on single-channel electroencephalograph (EEG) signals. Firstly, each EEG epoch is decomposed into low-level sub-bands (LSBs) and high-level sub-bands (HSBs) by wavelet packet decomposition (WPD), separately. Then, the DSSMs are estimated by the LSBs and the LE calculation is carried out on HSBs. Thirdly, the IMBEFs extracted from the DSSM and LE are fed into the appropriate classifier for sleep stage classification. The performance of the proposed method was evaluated on three public sleep databases. The experimental results show that under the Rechtschaffen's and Kale's (R&K) standard, the sleep stage classification accuracies of six classes on the Sleep EDF database and the Dreams Subjects database are 92.04% and 78.92%, respectively. Under the American Academy of Sleep Medicine (AASM) standard, the classification accuracies of five classes in the Dreams Subjects database and the ISRUC database reached 79.90% and 81.65%. The proposed method can be used for reliable sleep stage classification with high accuracy compared with state-of-the-art methods.

摘要

自动睡眠阶段分类技术可以帮助诊断睡眠障碍,并使医学专家从劳动密集型工作中解脱出来。本文提出了一种新的基于改进模型本质特征(IMBEFs)的方法,该方法结合局部能量(LE)和双状态空间模型(DSSMs),用于单通道脑电图(EEG)信号的自动睡眠阶段检测。首先,通过小波包分解(WPD)将每个 EEG 时段分解为低水平子带(LSBs)和高水平子带(HSBs)。然后,通过 LSBs 估计 DSSMs,并在 HSBs 上计算 LE。接着,从 DSSM 和 LE 中提取的 IMBEFs 被馈送到适当的分类器中进行睡眠阶段分类。该方法在三个公共睡眠数据库上进行了性能评估。实验结果表明,在 Rechtschaffen 和 Kale(R&K)标准下,Sleep EDF 数据库和 Dreams 主题数据库的六类睡眠阶段分类准确率分别为 92.04%和 78.92%。在美国睡眠医学学会(AASM)标准下,Dreams 主题数据库和 ISRUC 数据库的五类分类准确率分别达到 79.90%和 81.65%。与最先进的方法相比,该方法可以实现可靠的睡眠阶段分类,具有较高的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a5f/7506989/1c4c08d04ed6/sensors-20-04677-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验