Suppr超能文献

使用拉曼显微光谱和机器学习对氧化应激诱导的细胞毒性进行无标记鉴别和定量分析以及对抗氧化剂的潜在保护作用

Label-free discrimination and quantitative analysis of oxidative stress induced cytotoxicity and potential protection of antioxidants using Raman micro-spectroscopy and machine learning.

作者信息

Zhang Wei, Rhodes Jake S, Garg Ankit, Takemoto Jon Y, Qi Xiaojun, Harihar Sitaram, Tom Chang Cheng-Wei, Moon Kevin R, Zhou Anhong

机构信息

Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA.

Department of Mathematics and Statistics, Utah State University, Logan, UT, 84322, USA.

出版信息

Anal Chim Acta. 2020 Sep 1;1128:221-230. doi: 10.1016/j.aca.2020.06.074. Epub 2020 Jul 12.

Abstract

Diesel exhaust particles (DEPs) are major constituents of air pollution and associated with numerous oxidative stress-induced human diseases. In vitro toxicity studies are useful for developing a better understanding of species-specific in vivo conditions. Conventional in vitro assessments based on oxidative biomarkers are destructive and inefficient. In this study, Raman spectroscopy, as a non-invasive imaging tool, was used to capture the molecular fingerprints of overall cellular component responses (nucleic acid, lipids, proteins, carbohydrates) to DEP damage and antioxidant protection. We apply a novel data visualization algorithm called PHATE, which preserves both global and local structure, to display the progression of cell damage over DEP exposure time. Meanwhile, a mutual information (MI) estimator was used to identify the most informative Raman peaks associated with cytotoxicity. A health index was defined to quantitatively assess the protective effects of two antioxidants (resveratrol and mesobiliverdin IXα) against DEP induced cytotoxicity. In addition, a number of machine learning classifiers were applied to successfully discriminate different treatment groups with high accuracy. Correlations between Raman spectra and immunomodulatory cytokine and chemokine levels were evaluated. In conclusion, the combination of label-free, non-disruptive Raman micro-spectroscopy and machine learning analysis is demonstrated as a useful tool in quantitative analysis of oxidative stress induced cytotoxicity and for effectively assessing various antioxidant treatments, suggesting that this framework can serve as a high throughput platform for screening various potential antioxidants based on their effectiveness at battling the effects of air pollution on human health.

摘要

柴油尾气颗粒(DEPs)是空气污染的主要成分,并与多种氧化应激诱导的人类疾病相关。体外毒性研究有助于更好地理解物种特异性的体内情况。基于氧化生物标志物的传统体外评估具有破坏性且效率低下。在本研究中,拉曼光谱作为一种非侵入性成像工具,用于捕捉细胞整体成分(核酸、脂质、蛋白质、碳水化合物)对DEP损伤和抗氧化保护的分子指纹。我们应用一种名为PHATE的新型数据可视化算法,该算法既能保留全局结构又能保留局部结构,以展示细胞损伤在DEP暴露时间内的进展情况。同时,使用互信息(MI)估计器来识别与细胞毒性相关的最具信息性的拉曼峰。定义了一个健康指数来定量评估两种抗氧化剂(白藜芦醇和中胆绿素IXα)对DEP诱导的细胞毒性的保护作用。此外,应用了多种机器学习分类器来成功地高精度区分不同的治疗组。评估了拉曼光谱与免疫调节细胞因子和趋化因子水平之间的相关性。总之,无标记、非破坏性的拉曼显微光谱与机器学习分析的结合被证明是一种用于氧化应激诱导的细胞毒性定量分析以及有效评估各种抗氧化治疗的有用工具,这表明该框架可作为一个高通量平台,用于根据各种潜在抗氧化剂对抗空气污染对人类健康影响的有效性来筛选它们。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验