Suppr超能文献

氟西汀通过改善应激诱导的雄性抑郁大鼠模型中的轴突运输来增加海马神经存活。

Fluoxetine increases hippocampal neural survival by improving axonal transport in stress-induced model of depression male rats.

作者信息

Zavvari Fahime, Nahavandi Arezo

机构信息

Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran.

Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran.

出版信息

Physiol Behav. 2020 Dec 1;227:113140. doi: 10.1016/j.physbeh.2020.113140. Epub 2020 Aug 19.

Abstract

INTRODUCTION

Axonal transport deficit is a key mechanism involved in neurodegenerative conditions. Fluoxetine, a commonly used antidepressant for treatment of depression, is known to regulate several important structural and neurochemical aspects of hippocampal functions. However, the mechanisms underlying these effects are still poorly understood. This study aimed to investigate the effects of chronic fluoxetine treatment on axonal transport in the hippocampus of rat stress-induced model of depression.

METHODS

We have analyzed the effects of chronic fluoxetine treatment (20 mg/kg/day, 24 days) on immobility behavior (forced swimming test), hippocampal iNOS (inflammatory factor) expression (RT-PCR) as well as hippocampal BDNF, kinesin and dynein expression (RT-PCR) and hippocampal neuronal survival (Nissl staining).

RESULTS

This study provided evidence that fluoxetine could effectively suppress iNOS expression following unpredictable chronic mild stress (P < 0.01), increase hippocampal BDNF (P < 0.01), kinesin (P < 0.05) and dynein (P < 0.01) gene expression, and control neuronal death in CA1 (P < 0.01) and CA3 regions (P < 0.01) of the hippocampus and thereby improve immobility behavior (P < 0.001).

CONCLUSION

Based on the findings of this study, we concluded the neuroprotective effect of fluoxetine may be due to its ability to improve axonal transmission, followed by increased energy supply and neurotrophin concentration and function.

摘要

引言

轴突运输缺陷是神经退行性疾病的关键机制。氟西汀是一种常用的治疗抑郁症的抗抑郁药,已知其可调节海马功能的几个重要结构和神经化学方面。然而,这些作用的潜在机制仍知之甚少。本研究旨在探讨慢性氟西汀治疗对大鼠应激诱导抑郁症模型海马轴突运输的影响。

方法

我们分析了慢性氟西汀治疗(20毫克/千克/天,24天)对不动行为(强迫游泳试验)、海马诱导型一氧化氮合酶(炎症因子)表达(逆转录-聚合酶链反应)以及海马脑源性神经营养因子、驱动蛋白和动力蛋白表达(逆转录-聚合酶链反应)和海马神经元存活(尼氏染色)的影响。

结果

本研究提供的证据表明,氟西汀可有效抑制不可预测的慢性轻度应激后的诱导型一氧化氮合酶表达(P<0.01),增加海马脑源性神经营养因子(P<0.01)、驱动蛋白(P<0.05)和动力蛋白(P<0.01)基因表达,并控制海马CA1区(P<0.01)和CA3区(P<0.01)的神经元死亡,从而改善不动行为(P<0.001)。

结论

基于本研究的结果,我们得出结论,氟西汀的神经保护作用可能是由于其改善轴突传递的能力,随后增加能量供应以及神经营养因子浓度和功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验