Segert Simon, Davis-Stober Clintin P
Princeton University.
University of Missouri.
J Math Psychol. 2019 Aug;91:103-118. doi: 10.1016/j.jmp.2019.04.002. Epub 2019 May 3.
We present a general method for setting prior distributions in Bayesian models where parameters of interest are re-parameterized via a functional relationship. We generalize the results of Heck and Wagenmakers (2016) by considering the case where the dimension of the auxiliary parameter space does not equal that of the primary parameter space. We present numerical methods for carrying out prior specification for statistical models that do not admit closed-form solutions. Taken together, these results provide researchers a more complete set of tools for setting prior distributions that could be applied to many cognitive and decision making models. We illustrate our approach by reanalyzing data under the Selective Integration model of Tsetsos et al. (2016). We find, via a Bayes factor analysis, that the selective integration model with all four parameters generally outperforms both the three-parameter variant (omitting early cognitive noise) and the = 1 variant (omitting selective gating), as well as an unconstrained competitor model. By contrast, Tsetsos et al. found the three parameter variant to be the best performing in a BIC analysis (in the absence of a competitor). Finally, we also include a pedagogical treatment of the mathematical tools necessary to formulate our results, including a simple "toy" example that illustrates our more general points.
我们提出了一种在贝叶斯模型中设置先验分布的通用方法,其中通过函数关系对感兴趣的参数进行重新参数化。我们通过考虑辅助参数空间的维度与主要参数空间的维度不相等的情况,推广了赫克和瓦根梅克斯(2016年)的结果。我们提出了用于对不具有闭式解的统计模型进行先验设定的数值方法。综合起来,这些结果为研究人员提供了一套更完整的工具来设置先验分布,这些工具可应用于许多认知和决策模型。我们通过重新分析采措索斯等人(2016年)的选择性整合模型下的数据来说明我们的方法。通过贝叶斯因子分析,我们发现具有所有四个参数的选择性整合模型通常优于三参数变体(省略早期认知噪声)和(\lambda = 1)变体(省略选择性门控),以及一个无约束的竞争模型。相比之下,采措索斯等人发现在BIC分析中(在没有竞争模型的情况下)三参数变体表现最佳。最后,我们还对形成我们的结果所需的数学工具进行了教学式讲解,包括一个简单的“玩具”示例来说明我们更一般的观点。