Tran N-Han, van Maanen Leendert, Heathcote Andrew, Matzke Dora
Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands.
Front Psychol. 2021 Jan 21;11:608287. doi: 10.3389/fpsyg.2020.608287. eCollection 2020.
Parametric cognitive models are increasingly popular tools for analyzing data obtained from psychological experiments. One of the main goals of such models is to formalize psychological theories using parameters that represent distinct psychological processes. We argue that systematic quantitative reviews of parameter estimates can make an important contribution to robust and cumulative cognitive modeling. Parameter reviews can benefit model development and model assessment by providing valuable information about the expected parameter space, and can facilitate the more efficient design of experiments. Importantly, parameter reviews provide crucial-if not indispensable-information for the specification of informative prior distributions in Bayesian cognitive modeling. From the Bayesian perspective, prior distributions are an integral part of a model, reflecting cumulative theoretical knowledge about plausible values of the model's parameters (Lee, 2018). In this paper we illustrate how systematic parameter reviews can be implemented to generate informed prior distributions for the Diffusion Decision Model (DDM; Ratcliff and McKoon, 2008), the most widely used model of speeded decision making. We surveyed the published literature on empirical applications of the DDM, extracted the reported parameter estimates, and synthesized this information in the form of prior distributions. Our parameter review establishes a comprehensive reference resource for plausible DDM parameter values in various experimental paradigms that can guide future applications of the model. Based on the challenges we faced during the parameter review, we formulate a set of general and DDM-specific suggestions aiming to increase reproducibility and the information gained from the review process.
参数认知模型正日益成为分析从心理实验中获得的数据的常用工具。此类模型的主要目标之一是使用代表不同心理过程的参数来形式化心理理论。我们认为,对参数估计进行系统的定量综述可为稳健且累积性的认知建模做出重要贡献。参数综述可通过提供有关预期参数空间的有价值信息,从而有利于模型开发和模型评估,并有助于更高效地设计实验。重要的是,参数综述为贝叶斯认知建模中信息性先验分布的指定提供了关键(如果不是不可或缺的)信息。从贝叶斯的角度来看,先验分布是模型的一个组成部分,反映了关于模型参数合理值的累积理论知识(Lee,2018)。在本文中,我们说明了如何实施系统的参数综述,以为扩散决策模型(DDM;Ratcliff和McKoon,2008)生成信息性先验分布,该模型是使用最广泛的快速决策模型。我们调查了关于DDM实证应用的已发表文献,提取了报告的参数估计值,并以先验分布的形式综合了这些信息。我们的参数综述为各种实验范式中合理的DDM参数值建立了一个全面的参考资源,可指导该模型未来的应用。基于我们在参数综述过程中面临的挑战,我们制定了一套通用的以及针对DDM的建议,旨在提高可重复性以及从综述过程中获得的信息。