Babanezhad Meisam, Taghvaie Nakhjiri Ali, Rezakazemi Mashallah, Shirazian Saeed
Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
Faculty of Electrical-Electronic Engineering, Duy Tan University, Da Nang 550000, Vietnam.
ACS Omega. 2020 Aug 6;5(32):20558-20566. doi: 10.1021/acsomega.0c02784. eCollection 2020 Aug 18.
A bubble column reactor is simulated by a combination of Euler-Euler and adaptive network-based fuzzy inference system (ANFIS) method to develop an understanding of the machine learning (ML) technique in describing complex behavior of multiphase flow in bubble column reactors and for deep learning of input and output connections. In the validation stage of simulations, an intelligent bubble column is created that uses artificial intelligence nodes or neural network nodes, and the results of prediction indicated excellent agreement with computational fluid dynamics (CFD) simulation results. The hydrodynamic characteristics of the air bubbles and the amount of stress inside the bubble column reactor are used as the output of the ANFIS method. This study showed that when a three-dimensional bubble column is trained by a ML method, a similar CFD simulation can be created, which is independent of CFD source data. This type of smart simulation also enables us to avoid repeating the simulations with CFD methods that are time-consuming and computationally expensive for process modeling and optimization.
采用欧拉 - 欧拉方法与基于自适应网络的模糊推理系统(ANFIS)相结合的方式对鼓泡塔反应器进行模拟,以深入理解机器学习(ML)技术在描述鼓泡塔反应器中多相流复杂行为以及深度学习输入和输出连接方面的应用。在模拟的验证阶段,创建了一个使用人工智能节点或神经网络节点的智能鼓泡塔,预测结果表明与计算流体动力学(CFD)模拟结果高度吻合。气泡的流体动力学特性以及鼓泡塔反应器内部的应力大小被用作ANFIS方法的输出。该研究表明,当通过ML方法对三维鼓泡塔进行训练时,可以创建一个独立于CFD源数据的类似CFD模拟。这种智能模拟还使我们能够避免使用CFD方法重复进行模拟,因为CFD方法对于过程建模和优化来说既耗时又计算成本高昂。