Suppr超能文献

α-酮戊二酸可减弱结直肠癌细胞中的 Wnt 信号通路并促进其分化。

α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer.

机构信息

Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.

Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA.

出版信息

Nat Cancer. 2020 Mar;1(3):345-358. doi: 10.1038/s43018-020-0035-5. Epub 2020 Mar 20.

Abstract

Genetic-driven deregulation of the Wnt pathway is crucial but not sufficient for colorectal cancer (CRC) tumourigenesis. Here, we show that environmental glutamine restriction further augments Wnt signaling in APC mutant intestinal organoids to promote stemness and leads to adenocarcinoma formation via decreasing intracellular alpha-ketoglutarate (aKG) levels. aKG supplementation is sufficient to rescue low-glutamine induced stemness and Wnt hyperactivation. Mechanistically, we found that aKG promotes hypomethylation of DNA and histone H3K4me3, leading to an upregulation of differentiation-associated genes and downregulation of Wnt target genes, respectively. Using CRC patient-derived organoids and several CRC tumour models, we show that aKG supplementation suppresses Wnt signaling and promotes cellular differentiation, thereby significantly restricting tumour growth and extending survival. Together, our results reveal how metabolic microenvironment impacts Wnt signaling and identify aKG as a potent antineoplastic metabolite for potential differentiation therapy for CRC patients.

摘要

遗传驱动的 Wnt 通路失调对于结直肠癌 (CRC) 的肿瘤发生至关重要,但并非充分条件。在这里,我们表明环境谷氨酰胺限制进一步增强了 APC 突变肠道类器官中的 Wnt 信号,促进了干性,并通过降低细胞内 α-酮戊二酸 (aKG) 水平导致腺癌形成。aKG 补充足以挽救低谷氨酰胺诱导的干性和 Wnt 过度激活。在机制上,我们发现 aKG 促进 DNA 和组蛋白 H3K4me3 的低甲基化,分别导致分化相关基因的上调和 Wnt 靶基因的下调。使用 CRC 患者来源的类器官和几种 CRC 肿瘤模型,我们表明 aKG 补充抑制了 Wnt 信号并促进了细胞分化,从而显著限制了肿瘤生长并延长了生存期。总之,我们的结果揭示了代谢微环境如何影响 Wnt 信号,并确定了 aKG 作为一种潜在的抗肿瘤代谢物,可用于 CRC 患者的潜在分化治疗。

相似文献

1
α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer.
Nat Cancer. 2020 Mar;1(3):345-358. doi: 10.1038/s43018-020-0035-5. Epub 2020 Mar 20.
3
Dietary Alpha-Ketoglutarate Promotes Epithelial Metabolic Transition and Protects against DSS-Induced Colitis.
Mol Nutr Food Res. 2021 Apr;65(7):e2000936. doi: 10.1002/mnfr.202000936. Epub 2021 Mar 15.
6
Small subset of Wnt-activated cells is an initiator of regrowth in colorectal cancer organoids after irradiation.
Cancer Sci. 2020 Dec;111(12):4429-4441. doi: 10.1111/cas.14683. Epub 2020 Nov 2.
7
TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis.
Gastroenterology. 2019 Feb;156(3):708-721.e15. doi: 10.1053/j.gastro.2018.10.031. Epub 2018 Oct 24.
8
Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells.
Amino Acids. 2012 Jun;42(6):2491-500. doi: 10.1007/s00726-011-1060-6. Epub 2011 Aug 23.
10
The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications.
Amino Acids. 2016 Sep;48(9):2067-80. doi: 10.1007/s00726-016-2254-8. Epub 2016 May 9.

引用本文的文献

1
Crosstalk between dysregulated amino acid sensing and glucose and lipid metabolism in colorectal cancer.
Front Oncol. 2025 Aug 29;15:1665056. doi: 10.3389/fonc.2025.1665056. eCollection 2025.
3
Beyond the tumor: Enhancing pancreatic cancer therapy through glutamine metabolism and innovative drug delivery.
J Cell Commun Signal. 2025 Jul 9;19(3):e70033. doi: 10.1002/ccs3.70033. eCollection 2025 Sep.
5
7
Metabolic adaptations direct cell fate during tissue regeneration.
Nature. 2025 Jun 11. doi: 10.1038/s41586-025-09097-6.
8
Crosstalk between metabolic reprogramming and microbiota: implications for cancer progression and novel therapeutic opportunities.
Front Immunol. 2025 May 20;16:1582166. doi: 10.3389/fimmu.2025.1582166. eCollection 2025.
9
A glutamine metabolism gene signature with prognostic and predictive value for colorectal cancer survival and immunotherapy response.
Front Mol Biosci. 2025 May 15;12:1599141. doi: 10.3389/fmolb.2025.1599141. eCollection 2025.
10
Radiotherapy-induced alterations in tumor microenvironment: metabolism and immunity.
Front Cell Dev Biol. 2025 Apr 28;13:1568634. doi: 10.3389/fcell.2025.1568634. eCollection 2025.

本文引用的文献

1
p53 Promotes Cancer Cell Adaptation to Glutamine Deprivation by Upregulating Slc7a3 to Increase Arginine Uptake.
Cell Rep. 2019 Mar 12;26(11):3051-3060.e4. doi: 10.1016/j.celrep.2019.02.037.
3
Patient-derived organoids model treatment response of metastatic gastrointestinal cancers.
Science. 2018 Feb 23;359(6378):920-926. doi: 10.1126/science.aao2774.
4
Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer.
Cell Rep. 2017 Dec 26;21(13):3833-3845. doi: 10.1016/j.celrep.2017.11.104.
5
Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.
Cancer Treat Rev. 2018 Jan;62:50-60. doi: 10.1016/j.ctrv.2017.11.002. Epub 2017 Nov 13.
6
Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.
PLoS Biol. 2017 Nov 6;15(11):e2002810. doi: 10.1371/journal.pbio.2002810. eCollection 2017 Nov.
7
Aberrant DNA Methylation in Colorectal Cancer: What Should We Target?
Trends Cancer. 2017 Oct;3(10):698-712. doi: 10.1016/j.trecan.2017.08.003. Epub 2017 Sep 12.
9
Targeting the Colorectal Cancer Stem Cell.
N Engl J Med. 2017 Aug 31;377(9):888-890. doi: 10.1056/NEJMcibr1706541.
10
The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases.
Int J Mol Sci. 2017 May 12;18(5):1051. doi: 10.3390/ijms18051051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验