Suppr超能文献

p53 通过上调 Slc7a3 增加精氨酸摄取促进癌细胞适应谷氨酰胺缺乏。

p53 Promotes Cancer Cell Adaptation to Glutamine Deprivation by Upregulating Slc7a3 to Increase Arginine Uptake.

机构信息

Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA.

Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA; Department of Computational & Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.

出版信息

Cell Rep. 2019 Mar 12;26(11):3051-3060.e4. doi: 10.1016/j.celrep.2019.02.037.

Abstract

Cancer cells heavily depend on the amino acid glutamine to meet the demands associated with growth and proliferation. Due to the rapid consumption of glutamine, cancer cells frequently undergo glutamine starvation in vivo. We and others have shown that p53 is a critical regulator in metabolic stress resistance. To better understand the molecular mechanisms by which p53 activation promotes cancer cell adaptation to glutamine deprivation, we identified p53-dependent genes that are induced upon glutamine deprivation by using RNA-seq analysis. We show that Slc7a3, an arginine transporter, is significantly induced by p53. We also show that increased intracellular arginine levels following glutamine deprivation are dependent on p53. The influx of arginine has minimal effects on known metabolic pathways upon glutamine deprivation. Instead, we found arginine serves as an effector for mTORC1 activation to promote cell growth in response to glutamine starvation. Therefore, we identify a p53-inducible gene that contributes to the metabolic stress response.

摘要

癌细胞严重依赖氨基酸谷氨酰胺来满足生长和增殖相关的需求。由于谷氨酰胺的快速消耗,癌细胞在体内经常经历谷氨酰胺饥饿。我们和其他人已经表明,p53 是代谢应激抵抗的关键调节因子。为了更好地理解 p53 激活促进癌细胞适应谷氨酰胺缺乏的分子机制,我们通过 RNA-seq 分析鉴定了谷氨酰胺缺乏时 p53 依赖性诱导的基因。我们发现 Slc7a3(一种精氨酸转运体)可被 p53 显著诱导。我们还发现,谷氨酰胺缺乏后细胞内精氨酸水平的增加依赖于 p53。谷氨酰胺缺乏后,精氨酸的流入对已知的代谢途径几乎没有影响。相反,我们发现精氨酸作为 mTORC1 激活的效应物,以促进细胞生长来响应谷氨酰胺饥饿。因此,我们鉴定了一个 p53 诱导的基因,它有助于代谢应激反应。

相似文献

1
p53 Promotes Cancer Cell Adaptation to Glutamine Deprivation by Upregulating Slc7a3 to Increase Arginine Uptake.
Cell Rep. 2019 Mar 12;26(11):3051-3060.e4. doi: 10.1016/j.celrep.2019.02.037.
2
Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction.
Oncogene. 2017 Apr 6;36(14):1991-2001. doi: 10.1038/onc.2016.360. Epub 2016 Oct 10.
3
The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation.
Mol Cell. 2013 Apr 25;50(2):200-11. doi: 10.1016/j.molcel.2013.02.008. Epub 2013 Mar 14.
4
A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3.
Cell Metab. 2018 Nov 6;28(5):721-736.e6. doi: 10.1016/j.cmet.2018.07.005. Epub 2018 Aug 16.
6
Adaptive regulation of amino acid transport in nutrient-deprived human hepatomas.
Am J Surg. 1996 Jan;171(1):163-9. doi: 10.1016/S0002-9610(99)80093-2.
7
Gain-of-function genetic screens in human cells identify SLC transporters overcoming environmental nutrient restrictions.
Life Sci Alliance. 2022 Sep 16;5(11). doi: 10.26508/lsa.202201404. Print 2022 Nov.
8
Glutamine Deprivation Promotes the Generation and Mobilization of MDSCs by Enhancing Expression of G-CSF and GM-CSF.
Front Immunol. 2021 Feb 2;11:616367. doi: 10.3389/fimmu.2020.616367. eCollection 2020.

引用本文的文献

1
Enhanced LDL uptake and PPARα signaling support OSCC cell survival under glutamine deprivation.
Med Oncol. 2025 Jul 14;42(8):332. doi: 10.1007/s12032-025-02867-2.
2
Arginine Deprivation Induces Quiescence and Confers Vulnerability to Ferroptosis in Colorectal Cancer.
Cancer Res. 2025 May 2;85(9):1663-1679. doi: 10.1158/0008-5472.CAN-24-1940.
3
Metabolic regulation by p53: Implications for cancer therapy.
Mol Cells. 2025 Apr;48(4):100198. doi: 10.1016/j.mocell.2025.100198. Epub 2025 Feb 20.
4
Energy metabolism in health and diseases.
Signal Transduct Target Ther. 2025 Feb 18;10(1):69. doi: 10.1038/s41392-025-02141-x.
5
Glutamine and cancer: metabolism, immune microenvironment, and therapeutic targets.
Cell Commun Signal. 2025 Jan 24;23(1):45. doi: 10.1186/s12964-024-02018-6.
6
A hormetic response model for glutamine stress in cancer.
Trends Cancer. 2025 Mar;11(3):196-203. doi: 10.1016/j.trecan.2024.11.008. Epub 2024 Dec 16.
7
Targeting cellular adaptive responses to glutaminolysis perturbation for cancer therapy.
Mol Cells. 2024 Aug;47(8):100096. doi: 10.1016/j.mocell.2024.100096. Epub 2024 Jul 20.
8
Asparagine Dependency Is a Targetable Metabolic Vulnerability in TP53-Altered Castration-Resistant Prostate Cancer.
Cancer Res. 2024 Sep 16;84(18):3004-3022. doi: 10.1158/0008-5472.CAN-23-2910.
9
Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design.
Bioact Mater. 2024 May 31;40:1-18. doi: 10.1016/j.bioactmat.2024.05.044. eCollection 2024 Oct.
10
Metabolic signature and response to glutamine deprivation are independent of p53 status in B cell malignancies.
iScience. 2024 Mar 28;27(5):109640. doi: 10.1016/j.isci.2024.109640. eCollection 2024 May 17.

本文引用的文献

1
Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity.
Cell Metab. 2018 Jun 5;27(6):1263-1280.e6. doi: 10.1016/j.cmet.2018.04.009. Epub 2018 May 10.
2
Emerging Roles of p53 Family Members in Glucose Metabolism.
Int J Mol Sci. 2018 Mar 8;19(3):776. doi: 10.3390/ijms19030776.
3
As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid.
Cell Metab. 2018 Feb 6;27(2):428-438.e5. doi: 10.1016/j.cmet.2017.12.006. Epub 2018 Jan 11.
4
Putting p53 in Context.
Cell. 2017 Sep 7;170(6):1062-1078. doi: 10.1016/j.cell.2017.08.028.
5
mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer.
Nature. 2017 Jul 6;547(7661):109-113. doi: 10.1038/nature22964. Epub 2017 Jun 28.
6
Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine.
EMBO J. 2017 May 15;36(10):1302-1315. doi: 10.15252/embj.201696151. Epub 2017 Apr 18.
7
Arginine Metabolism Revisited.
J Nutr. 2016 Dec;146(12):2579S-2586S. doi: 10.3945/jn.115.226621. Epub 2016 Nov 9.
8
Oncogene-directed alterations in cancer cell metabolism.
Trends Cancer. 2016 Jul;2(7):365-377. doi: 10.1016/j.trecan.2016.06.002. Epub 2016 Jun 27.
9
Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction.
Oncogene. 2017 Apr 6;36(14):1991-2001. doi: 10.1038/onc.2016.360. Epub 2016 Oct 10.
10
Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation.
Nat Cell Biol. 2016 Oct;18(10):1090-101. doi: 10.1038/ncb3410. Epub 2016 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验