Suppr超能文献

人体测量特征对预测精英青年足球运动员身体表现的重要性:一种机器学习方法。

Importance of anthropometric features to predict physical performance in elite youth soccer: a machine learning approach.

机构信息

Nutrition, Hydration & Body Composition Department, Parma Calcio 1913, Parma, Italy.

Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.

出版信息

Res Sports Med. 2021 May-Jun;29(3):213-224. doi: 10.1080/15438627.2020.1809410. Epub 2020 Aug 23.

Abstract

The present study aimed to determine the contribution of soccer players' anthropometric features to predict their physical performance. Sixteen players, from a professional youth soccer academy, were recruited. Several anthropometric features such as corrected arm muscle area (AMA), arm muscle circumference (AMC) and right and left suprapatellar girths (RSPG and LSPG) were employed in this study. Players' physical performance was assessed by the change of direction (COD), sprint (10-m and 20-m), and vertical jump (CMJ) tests, and Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IRT1). Using an extra tree regression (ETR) model, the anthropometric features permitted to accurately predict 10-m sprint, 20-m sprint and Yo-Yo IRTL 1 performance (p < 0.05). ETR showed that upper-body features as AMA, and AMC affected 10-m and 20-m sprint performances, while lower-body features as RSPG and LSPG influenced the Yo-Yo IRTL 1 (Overall Gini importance ≥ 0.22). The model predicting COD and CMJ presented a poor level of prediction, suggesting that other factors, rather than anthropometric features, may concur to predict their changes in performance. These findings demonstrated that the upper- and lower-body anthropometric features are strictly related to sprint and aerobic fitness performance in elite youth soccer.

摘要

本研究旨在确定足球运动员的人体测量特征对其身体表现的预测贡献。从一家职业青年足球学院招募了 16 名球员。本研究采用了一些人体测量特征,如校正手臂肌肉区(AMA)、手臂肌肉周长(AMC)以及右膝和左膝上的周长(RSPG 和 LSPG)。球员的身体表现通过变向(COD)、冲刺(10 米和 20 米)和垂直跳跃(CMJ)测试以及 Yo-Yo 间歇性恢复测试 1 级(Yo-Yo IRT1)进行评估。使用 Extra Tree Regression(ETR)模型,这些人体测量特征可以准确预测 10 米冲刺、20 米冲刺和 Yo-Yo IRTL 1 表现(p<0.05)。ETR 显示,上半身特征如 AMA 和 AMC 影响 10 米和 20 米冲刺表现,而下半身特征如 RSPG 和 LSPG 影响 Yo-Yo IRTL 1(整体基尼重要性≥0.22)。预测 COD 和 CMJ 的模型预测水平较差,表明可能还有其他因素而不仅仅是人体测量特征,共同影响其表现的变化。这些发现表明,在上肢和下肢的人体测量特征与精英青年足球的冲刺和有氧健身表现密切相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验