Mei Tao, Chen Jiahui, Zhao Qinghua, Wang Dong
Collage of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
Hubei Key Laboratory of Advanced Textile Materials & Application, Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China.
ACS Appl Mater Interfaces. 2020 Sep 23;12(38):42686-42695. doi: 10.1021/acsami.0c09518. Epub 2020 Sep 8.
Utilizing solar energy to evaporate seawater or sewage to improve water quality is an environment-friendly and sustainable water treatment technology, which has been widely concerned. However, there are still many challenges for efficient solar vapor generation, such as incapable free floating, low water-transfer rates, low energy efficiency, serious salt precipitation, and short service life. Herein, photothermal conversion nanofibrous aerogels (PTCNFAs) with vertically aligned microchannels inside are fabricated. Because of the orderly framework structure and the good hydrophilicity, the PTCNFAs show excellent underwater compressive fatigue durability (nearly no plastic deformation after 50 compressive cycles) and water-transfer rate (0.5 cm s in the first second). Furthermore, the surface temperature of the PTCNFAs could rise from 28 to 94 °C in air, after being irradiated for 30 s by 1 sun. Benefiting from the excellent mechanical properties, high water-transfer rates, and outstanding photothermal properties, the PTCNFAs are more convenient in application and exhibit an efficient solar water evaporation rate (2.89 kg m h), while the energy efficiency under 1 sun is about 90.3%. This work provides a new approach to design and fabricate the solar steam generation materials for water treatment.
利用太阳能蒸发海水或污水以改善水质是一种环境友好且可持续的水处理技术,已受到广泛关注。然而,高效太阳能蒸汽产生仍面临诸多挑战,如无法自由漂浮、水传输速率低、能源效率低、严重的盐沉淀以及使用寿命短等问题。在此,制备了内部具有垂直排列微通道的光热转换纳米纤维气凝胶(PTCNFAs)。由于有序的骨架结构和良好的亲水性,PTCNFAs表现出优异的水下压缩疲劳耐久性(50次压缩循环后几乎无塑性变形)和水传输速率(最初一秒内为0.5 cm/s)。此外,在1个太阳光照30秒后,PTCNFAs在空气中的表面温度可从28℃升至94℃。受益于优异的机械性能、高水传输速率和出色的光热性能,PTCNFAs在应用中更便捷,展现出高效的太阳能水蒸发速率(2.89 kg m-2 h-1),而在1个太阳光照下的能源效率约为90.3%。这项工作为设计和制造用于水处理的太阳能蒸汽产生材料提供了一种新方法。