Bhupathi Saranya, Wang Shancheng, Abutoama Mohammad, Balin Igal, Wang Lei, Kazansky Peter G, Long Yi, Abdulhalim Ibrahim
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.
Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), 138602 Singapore.
ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41905-41918. doi: 10.1021/acsami.0c03844. Epub 2020 Sep 4.
Surface patterning is a popular approach to produce photonic metasurfaces that are tunable when electro-optic, thermo-optic, or magneto-optic materials are used. Vanadium oxides (VO) are well-known phase change materials with many applications, especially when used as tunable metamaterial photonic structures. Particularly, VO is a well-known thermochromic material for its near-room-temperature phase transition from the insulating to the metallic state. One-dimensional (1D) VO nanograting structures are studied by numerical simulation, and the simulation results reveal that the VO nanograting structures could enhance the luminous transmittance () compared with a pristine flat VO surface. It is worth mentioning that is also polarization-dependent, and both larger grating height and smaller grating periodicity give enhanced , particularly at TE polarization in both insulating (20 °C) and metallic (90 °C) states of VO. Femtosecond laser-patterned VO films exhibiting nanograting structures with an average periodicity of ≈500-700 nm have been fabricated for the first time to enhance thermochromic properties. Using X-ray photoelectron spectroscopy, it is shown that at the optimum laser processing conditions, VO dominates the film composition, while under extra processing, the existence of other vanadium oxide phases such as VO and VO increases. Such structures show enhanced transmittance in the near-infrared (NIR) region, with an improvement in NIR and solar modulation abilities (Δ = 10.8%, Δ = 10.9%) compared with a flat VO thin film (Δ = 8%, Δ = 10.2%). The slight reduction in transmittance in the visible region is potentially due to the scattering caused by the imperfect nanograting structures. This new patterning approach helps understand the polarization-dependent optical response of VO thin films and opens a new gateway for smart devices.
表面图案化是一种用于制造光子超表面的常用方法,当使用电光、热光或磁光材料时,这种超表面是可调节的。氧化钒(VO)是一种众所周知的相变材料,有许多应用,特别是当用作可调谐超材料光子结构时。特别地,VO因其在接近室温时从绝缘态到金属态的相变而成为一种著名的热致变色材料。通过数值模拟研究了一维(1D)VO纳米光栅结构,模拟结果表明,与原始的平坦VO表面相比,VO纳米光栅结构可以提高发光透射率()。值得一提的是, 也是偏振相关的,更大的光栅高度和更小的光栅周期都会提高 ,特别是在VO的绝缘(20°C)和金属(90°C)状态下的TE偏振时。首次制备了具有平均周期约为500 - 700 nm的纳米光栅结构的飞秒激光图案化VO薄膜,以增强热致变色性能。使用X射线光电子能谱表明,在最佳激光加工条件下,VO在薄膜成分中占主导地位,而在额外加工条件下,其他氧化钒相如VO和VO的存在会增加。与平坦的VO薄膜(Δ = 8%,Δ = 10.2%)相比,这种结构在近红外(NIR)区域显示出增强的透射率,近红外和太阳调制能力有所提高(Δ = 10.8%,Δ = 10.9%)。可见光区域透射率的轻微降低可能是由于不完美的纳米光栅结构引起的散射。这种新的图案化方法有助于理解VO薄膜的偏振相关光学响应,并为智能设备开辟了新的途径。