Reimann Marc, Kaupp Martin
Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623, Berlin, Germany.
J Phys Chem A. 2020 Sep 17;124(37):7439-7452. doi: 10.1021/acs.jpca.0c06322. Epub 2020 Sep 8.
The 3D-RISM-SCF solvent-model implementation of Gusarov et al. [ 2006, 110, 6083-6090] in the Amsterdam density functional program has been improved and extended. In particular, an accurate yet efficient representation of the solute electrostatic potential is provided. The Coulomb-potential fitting of many DFT codes can be used advantageously in this context. The extra effort compared to a point-charge representation is small for a given SCF cycle and compensated by faster SCF convergence. This allows applications to large solutes, as demonstrated by evaluation of the solvatochromism of Reichardt's dye. In general, TDDFT applications to excitation energies in solution stand out and are highlighted. Applications to the O NMR chemical shifts of -methylformamide in different solvents also demonstrate the distinct advantages of 3D-RISM over continuum solvents. Limitations are observed in this case for water solvent, where the solvent shielding is overestimated. This shortcoming applies also to the O gas-to-liquid shift of water, where we used localized molecular orbital analyses for a deeper understanding. For such cases of extremely strong solute-solvent interactions, couplings between solute and solvent orbitals induced by the magnetic perturbation are relevant. These clearly require a quantum-mechanical treatment of the most closely bound solvent molecules. Except for such extreme cases, 3D-RISM-SCF is very well suited to treat solvent effects on NMR parameters. More serious limitations pertain to the treatment of vibrational spectra, where the absence of the coupling between solute and solvent vibrational modes limits the accuracy of applications of 3D-RISM-SCF. The reported extended, efficient, and numerically accurate 3D-RISM-SCF implementation should provide a useful tool to study chemical and spectroscopic properties of molecules of appreciable size in a realistic solvent environment.
古萨罗夫等人[2006, 110, 6083 - 6090]在阿姆斯特丹密度泛函程序中的3D - RISM - SCF溶剂模型实现已得到改进和扩展。特别是,提供了溶质静电势的精确而高效的表示。在此背景下,可以有利地使用许多DFT代码的库仑势拟合。与点电荷表示相比,对于给定的SCF循环,额外的工作量很小,并且通过更快的SCF收敛得到补偿。这使得能够应用于大型溶质,如通过评估赖夏德特染料的溶剂化显色所证明的那样。一般来说,TDDFT在溶液中激发能方面的应用很突出并得到了强调。对不同溶剂中N - 甲基甲酰胺的¹⁷O NMR化学位移的应用也证明了3D - RISM相对于连续介质溶剂的明显优势。在这种情况下,观察到水溶剂存在局限性,即溶剂屏蔽被高估。这种缺点也适用于水的¹⁷O气 - 液位移,我们在此使用局域分子轨道分析以进行更深入的理解。对于这种溶质 - 溶剂相互作用极强的情况,由磁扰动引起的溶质和溶剂轨道之间的耦合是相关的。这些显然需要对最紧密结合的溶剂分子进行量子力学处理。除了这种极端情况外,3D - RISM - SCF非常适合处理溶剂对NMR参数的影响。更严重的局限性与振动光谱的处理有关,其中溶质和溶剂振动模式之间缺乏耦合限制了3D - RISM - SCF应用的准确性。所报道的扩展、高效且数值精确的3D - RISM - SCF实现应该为研究实际溶剂环境中相当大小分子的化学和光谱性质提供一个有用的工具。