Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK.
Org Biomol Chem. 2020 Sep 21;18(35):6757-6780. doi: 10.1039/d0ob01583k. Epub 2020 Aug 25.
Mechanically interlocked molecules have fascinated chemists for decades. Initially a tantalising synthetic challenge, interlocked molecules have continued to capture the imagination for their aesthetics and, increasingly, for their potential as molecular machines and use in materials applications. Whilst preliminary statistical attempts to prepare these molecules were exceedingly inefficient, a raft of template-directed strategies have now been realised, providing a vast toolbox from which chemists can access interlocked structures in excellent yields. For many envisaged applications it is desirable to move away from small, discrete interlocked molecules and turn to oligomers and polymers instead, either due to the need for multiple mechanical bonds within the desired material, or to exploit an extended scaffold for the organisation and arrangement of individual mechanically interlocked units. In this tutorial-style review we outline the synthetic strategies that have been employed for the synthesis of mechanically interlocked oligomers and polymers, including oligo-/polymerisation of (pseudo)interlocked precursors, metal-organic self-assembly, the use of orthogonal template motifs, iterative approaches and grafting onto polymer backbones.
机械互锁分子几十年来一直令化学家着迷。最初,互锁分子作为一种诱人的合成挑战,它们的美学设计不断吸引着人们的想象力,而且越来越多地被用作分子机器,并应用于材料领域。虽然初步的统计方法在制备这些分子时效率极低,但现在已经实现了一系列模板导向策略,为化学家提供了一个庞大的工具箱,可以从中以优异的产率获得互锁结构。对于许多预期的应用,人们希望摆脱小而离散的互锁分子,转而使用低聚物和聚合物,这要么是因为所需材料中需要多个机械键,要么是因为需要扩展支架来组织和排列单个机械互锁单元。在本综述中,我们概述了用于合成机械互锁低聚物和聚合物的合成策略,包括(伪)互锁前体的聚合/齐聚、金属有机自组装、正交模板基序的使用、迭代方法和接枝到聚合物主链上。