Suppr超能文献

针对非重复不确定性的鲁棒迭代学习控制的收敛性分析:系统等价变换

Convergence Analysis of Robust Iterative Learning Control Against Nonrepetitive Uncertainties: System Equivalence Transformation.

作者信息

Meng Deyuan, Zhang Jingyao

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Sep;32(9):3867-3879. doi: 10.1109/TNNLS.2020.3016057. Epub 2021 Aug 31.

Abstract

This article is concerned with the robust convergence analysis of iterative learning control (ILC) against nonrepetitive uncertainties, where the contradiction between convergence conditions for the output tracking error and the input signal (or error) is addressed. A system equivalence transformation (SET) is proposed for robust ILC such that given any desired reference trajectories, the output tracking problems for general nonsquare multi-input, multi-output (MIMO) systems can be equivalently transformed into those for the specific class of square MIMO systems with the same input and output numbers. As a benefit of SET, a unified condition is only needed to guarantee both the uniform boundedness of all system signals and the robust convergence of the output tracking error, which avoids causing the condition contradiction problem in implementing the double-dynamics analysis approach to ILC. Simulation examples are included to demonstrate the validity of our established robust ILC results.

摘要

本文关注迭代学习控制(ILC)针对非重复不确定性的鲁棒收敛性分析,其中解决了输出跟踪误差的收敛条件与输入信号(或误差)之间的矛盾。针对鲁棒ILC提出了一种系统等价变换(SET),使得对于任意期望的参考轨迹,一般非方阵多输入多输出(MIMO)系统的输出跟踪问题可以等价地变换为具有相同输入和输出数量的特定方阵MIMO系统的输出跟踪问题。作为SET的一个优点,仅需要一个统一的条件来保证所有系统信号的一致有界性和输出跟踪误差的鲁棒收敛性,这避免了在对ILC实施双动力学分析方法时出现条件矛盾问题。文中包含仿真示例以证明我们所建立的鲁棒ILC结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验