Liu Zhiqing, Chi Ronghu, Liu Yang, Huang Biao
IEEE Trans Cybern. 2024 Nov;54(11):6307-6318. doi: 10.1109/TCYB.2024.3398717. Epub 2024 Oct 30.
This work considers three main problems related to fast finite-iteration convergence (FIC), nonrepetitive uncertainty, and data-driven design. A data-driven robust finite-iteration learning control (DDRFILC) is proposed for a multiple-input-multiple-output (MIMO) nonrepetitive uncertain system. The proposed learning control has a tunable learning gain computed through the solution of a set of linear matrix inequalities (LMIs). It warrants a bounded convergence within the predesignated finite iterations. In the proposed DDRFILC, not only can the tracking error bound be determined in advance but also the convergence iteration number can be designated beforehand. To deal with nonrepetitive uncertainty, the MIMO uncertain system is reformulated as an iterative incremental linear model by defining a pseudo partitioned Jacobian matrix (PPJM), which is estimated iteratively by using a projection algorithm. Further, both the PPJM estimation and its estimation error bound are included in the LMIs to restrain their effects on the control performance. The proposed DDRFILC can guarantee both the iterative asymptotic convergence with increasing iterations and the FIC within the prespecified iteration number. Simulation results verify the proposed algorithm.
本文研究了与快速有限迭代收敛(FIC)、非重复不确定性和数据驱动设计相关的三个主要问题。针对多输入多输出(MIMO)非重复不确定系统,提出了一种数据驱动的鲁棒有限迭代学习控制(DDRFILC)方法。所提出的学习控制具有通过求解一组线性矩阵不等式(LMI)计算得到的可调学习增益。它保证在预先指定的有限次迭代内收敛有界。在所提出的DDRFILC中,不仅可以预先确定跟踪误差界,而且可以预先指定收敛迭代次数。为了处理非重复不确定性,通过定义一个伪划分雅可比矩阵(PPJM)将MIMO不确定系统重新表述为一个迭代增量线性模型,该矩阵使用投影算法进行迭代估计。此外,PPJM估计及其估计误差界都包含在LMI中,以抑制它们对控制性能的影响。所提出的DDRFILC既可以保证随着迭代次数增加的迭代渐近收敛,又可以保证在预定迭代次数内的FIC。仿真结果验证了所提出的算法。