Suppr超能文献

在正常离子强度缓冲液中对小分子结合动力学的电荷敏感光学检测。

Charge-Sensitive Optical Detection of Small Molecule Binding Kinetics in Normal Ionic Strength Buffer.

出版信息

ACS Sens. 2021 Feb 26;6(2):364-370. doi: 10.1021/acssensors.0c01063. Epub 2020 Sep 9.

Abstract

Most label-free detection technologies detect the masses of molecules, and their sensitivities thus decrease with molecular weight, making it challenging to detect small molecules. To address this need, we have developed a charge-sensitive optical detection (CSOD) technique, which detects the charge rather than the mass of a molecule with an optical fiber. However, the effective charge of a molecule decreases with the buffer ionic strength. For this reason, the previous CSOD works with diluted buffers, which could affect the measured molecular binding kinetics. Here, we show a technique capable of detecting molecular binding kinetics in normal ionic strength buffers. An H-shaped sample well was developed to increase the current density at the sensing area to compensate the signal loss due to ionic screening at normal ionic strength buffer, while keeping the current density low at the electrodes to minimize the electrode reaction. In addition, agarose gels were used to cover the electrodes to prevent electrode reaction generated bubbles from entering the sensing area. With this new design, we have measured the binding kinetics between G-protein-coupled receptors (GPCRs) and their small molecule ligands in normal buffer. We found that the affinities measured in normal buffer are stronger than those measured in diluted buffer, likely due to the stronger electrostatic repulsion force between the same charged ligands and receptors in the diluted buffer.

摘要

大多数无标记检测技术检测分子的质量,因此其灵敏度随分子量的降低而降低,使得检测小分子变得具有挑战性。为了解决这个需求,我们开发了一种电荷敏感的光学检测(CSOD)技术,该技术通过光纤检测分子的电荷而不是质量。然而,分子的有效电荷随缓冲离子强度的降低而降低。出于这个原因,之前的 CSOD 工作在稀释的缓冲液中,这可能会影响测量的分子结合动力学。在这里,我们展示了一种能够在正常离子强度缓冲液中检测分子结合动力学的技术。开发了一种 H 形样品槽,以增加传感区域的电流密度,补偿正常离子强度缓冲液中离子屏蔽引起的信号损失,同时将电极处的电流密度保持在低水平,以最小化电极反应。此外,琼脂糖凝胶用于覆盖电极,以防止电极反应产生的气泡进入传感区域。有了这个新设计,我们已经测量了 G 蛋白偶联受体(GPCR)与其小分子配体在正常缓冲液中的结合动力学。我们发现,在正常缓冲液中测量的亲和力比在稀释缓冲液中测量的亲和力更强,这可能是由于在稀释缓冲液中相同带电配体和受体之间的静电排斥力更强。

相似文献

1
Charge-Sensitive Optical Detection of Small Molecule Binding Kinetics in Normal Ionic Strength Buffer.
ACS Sens. 2021 Feb 26;6(2):364-370. doi: 10.1021/acssensors.0c01063. Epub 2020 Sep 9.
2
Charge Sensitive Optical Detection for Measurement of Small-Molecule Binding Kinetics.
Methods Mol Biol. 2022;2393:315-328. doi: 10.1007/978-1-0716-1803-5_17.
3
Study of Small-Molecule-Membrane Protein Binding Kinetics with Nanodisc and Charge-Sensitive Optical Detection.
Anal Chem. 2016 Feb 16;88(4):2375-9. doi: 10.1021/acs.analchem.5b04366. Epub 2016 Jan 25.
4
Electrostatic Repulsion during Ferritin Assembly and Its Screening by Ions.
Biochemistry. 2016 Jan 26;55(3):482-8. doi: 10.1021/acs.biochem.5b01197. Epub 2016 Jan 8.
5
Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.
Mol Pharm. 2015 Jan 5;12(1):179-93. doi: 10.1021/mp500533c. Epub 2014 Dec 2.
7
8
Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.
Langmuir. 2016 Sep 6;32(35):9074-82. doi: 10.1021/acs.langmuir.6b01936. Epub 2016 Aug 23.

引用本文的文献

1
Plasmonic DNA-Barcoded Virion Nano-Oscillators for Multiplexed Quantification of Small-Molecule Binding Kinetics to Membrane Proteins.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202506464. doi: 10.1002/anie.202506464. Epub 2025 May 28.
2
Recent Advances in Real-Time Label-Free Detection of Small Molecules.
Biosensors (Basel). 2024 Feb 1;14(2):80. doi: 10.3390/bios14020080.

本文引用的文献

2
Detecting Protein-Ligand Interaction from Integrated Transient Induced Molecular Electronic Signal (i-TIMES).
Anal Chem. 2020 Mar 3;92(5):3852-3859. doi: 10.1021/acs.analchem.9b05310. Epub 2020 Feb 20.
3
Serological point-of-care and label-free capacitive diagnosis of dengue virus infection.
Biosens Bioelectron. 2020 Mar 1;151:111972. doi: 10.1016/j.bios.2019.111972. Epub 2019 Dec 17.
4
Development and application of a high-content virion display human GPCR array.
Nat Commun. 2019 Apr 30;10(1):1997. doi: 10.1038/s41467-019-09938-9.
5
Kinetics of Drug Binding and Residence Time.
Annu Rev Phys Chem. 2019 Jun 14;70:143-171. doi: 10.1146/annurev-physchem-042018-052340. Epub 2019 Feb 20.
6
Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors.
ACS Sens. 2019 Feb 22;4(2):286-293. doi: 10.1021/acssensors.8b00344. Epub 2019 Feb 5.
7
Measuring Ligand Binding Kinetics to Membrane Proteins Using Virion Nano-oscillators.
J Am Chem Soc. 2018 Sep 12;140(36):11495-11501. doi: 10.1021/jacs.8b07461. Epub 2018 Aug 29.
8
Study of Small-Molecule-Membrane Protein Binding Kinetics with Nanodisc and Charge-Sensitive Optical Detection.
Anal Chem. 2016 Feb 16;88(4):2375-9. doi: 10.1021/acs.analchem.5b04366. Epub 2016 Jan 25.
9
The drug-target residence time model: a 10-year retrospective.
Nat Rev Drug Discov. 2016 Feb;15(2):87-95. doi: 10.1038/nrd.2015.18. Epub 2015 Dec 18.
10
Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.
Science. 2015 Oct 16;350(6258):aab4077. doi: 10.1126/science.aab4077. Epub 2015 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验