Cao Shuo-Hui, Wan Zijian, Johansen Eric, Ma Guangzhong, Desai Prashant, Zhu Heng, Wang Shaopeng
Center for Bioelectronics and Biosensors, the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen, Fujian, 361005, China.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202506464. doi: 10.1002/anie.202506464. Epub 2025 May 28.
A high-density nano-oscillator platform using self-assembled DNA-barcoded virion sensors is developed to address the critical need for high-throughput label-free measurement of small-molecule binding to membrane proteins. By integrating virion display technology with charge-sensitive plasmonic detection, our platform enables robust, label-free quantification of small-molecule binding kinetics to membrane proteins. Gold nanoparticle-virion conjugates are self-assembled onto a plasmonic sensor chip via a flexible molecular linker to form high-density nano-oscillators. Driven by an alternating electric field, the oscillation amplitudes of the nano-oscillators are precisely measured via widefield plasmonic imaging. This charge-sensitive mechanism can sensitively detect the binding of small-molecule ligands to the membrane proteins displayed on the virions at single-nanosensor resolution, overcoming the sensitivity limit of conventional mass-sensitive techniques. More importantly, the platform employs novel affinity-discriminated DNA barcodes for multistate decoding with exponential multiplexing capacity, enabling high-throughput screening of a library of membrane proteins. For a proof-of-concept demonstration, binding kinetics of five pairs of G-protein-coupled receptors and their corresponding small molecule ligands are measured on a single sensor chip, with all individual nano-oscillators identified by just two affinity-discriminated, quadra-state DNA decoders. This technology advances membrane protein research and drug screening capabilities, offering a practical solution for biomolecular interaction studies and biosensing applications.
开发了一种使用自组装DNA条形码病毒体传感器的高密度纳米振荡器平台,以满足对小分子与膜蛋白结合进行高通量无标记测量的迫切需求。通过将病毒体展示技术与电荷敏感等离子体检测相结合,我们的平台能够对小分子与膜蛋白的结合动力学进行稳健的无标记定量。金纳米颗粒-病毒体缀合物通过柔性分子接头自组装到等离子体传感器芯片上,形成高密度纳米振荡器。在交变电场驱动下,通过宽场等离子体成像精确测量纳米振荡器的振荡幅度。这种电荷敏感机制能够以单纳米传感器分辨率灵敏地检测小分子配体与病毒体上展示的膜蛋白的结合,克服了传统质量敏感技术的灵敏度限制。更重要的是,该平台采用了新型的亲和区分DNA条形码进行具有指数复用能力的多状态解码,能够对膜蛋白文库进行高通量筛选。作为概念验证演示,在单个传感器芯片上测量了五对G蛋白偶联受体及其相应小分子配体的结合动力学,所有单个纳米振荡器仅通过两个亲和区分的四状态DNA解码器进行识别。这项技术推动了膜蛋白研究和药物筛选能力的发展,为生物分子相互作用研究和生物传感应用提供了一个切实可行的解决方案。
Acc Chem Res. 2025-2-18
J Am Chem Soc. 2018-8-29
Sci Robot. 2024-11-27
ACS Sens. 2024-2-23
Anal Biochem. 2023-12-15
Chem Rev. 2023-4-12
Lab Chip. 2023-3-1
Angew Chem Int Ed Engl. 2022-10-17