School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China;
IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22024-22034. doi: 10.1073/pnas.1922401117. Epub 2020 Aug 25.
In decision making under risk (DMR) participants' choices are based on probability values systematically different from those that are objectively correct. Similar systematic distortions are found in tasks involving relative frequency judgments (JRF). These distortions limit performance in a wide variety of tasks and an evident question is, Why do we systematically fail in our use of probability and relative frequency information? We propose a bounded log-odds model (BLO) of probability and relative frequency distortion based on three assumptions: 1) log-odds: probability and relative frequency are mapped to an internal log-odds scale, 2) boundedness: the range of representations of probability and relative frequency are bounded and the bounds change dynamically with task, and 3) variance compensation: the mapping compensates in part for uncertainty in probability and relative frequency values. We compared human performance in both DMR and JRF tasks to the predictions of the BLO model as well as 11 alternative models, each missing one or more of the underlying BLO assumptions (factorial model comparison). The BLO model and its assumptions proved to be superior to any of the alternatives. In a separate analysis, we found that BLO accounts for individual participants' data better than any previous model in the DMR literature. We also found that, subject to the boundedness limitation, participants' choice of distortion approximately maximized the mutual information between objective task-relevant values and internal values, a form of bounded rationality.
在风险决策(DMR)中,参与者的选择基于概率值,这些概率值与客观正确的概率值系统地不同。在涉及相对频率判断(JRF)的任务中也发现了类似的系统扭曲。这些扭曲限制了各种任务的表现,一个明显的问题是,为什么我们在使用概率和相对频率信息时会系统地失败?我们提出了一个基于三个假设的概率和相对频率扭曲的有界对数odds 模型(BLO):1)对数odds:概率和相对频率被映射到内部对数odds 尺度上,2)有界性:概率和相对频率的表示范围是有界的,并且边界随任务动态变化,3)方差补偿:映射部分补偿概率和相对频率值的不确定性。我们将人类在 DMR 和 JRF 任务中的表现与 BLO 模型以及 11 个替代模型的预测进行了比较,每个替代模型都缺少一个或多个基本的 BLO 假设(因子模型比较)。BLO 模型及其假设被证明优于任何替代模型。在单独的分析中,我们发现 BLO 比 DMR 文献中的任何以前的模型都更好地解释了个体参与者的数据。我们还发现,在有界性限制的情况下,参与者对扭曲的选择大约使客观任务相关值和内部值之间的互信息最大化,这是一种有界理性。