Suppr超能文献

量化太阳能电池和发光二极管中的光子回收:吸收和发射始终是关键。

Quantifying Photon Recycling in Solar Cells and Light-Emitting Diodes: Absorption and Emission Are Always Key.

作者信息

Bowman Alan R, Anaya Miguel, Greenham Neil C, Stranks Samuel D

机构信息

Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom.

出版信息

Phys Rev Lett. 2020 Aug 7;125(6):067401. doi: 10.1103/PhysRevLett.125.067401.

Abstract

Photon recycling has received increased attention in recent years following its observation in halide perovskites. It has been shown to lower the effective bimolecular recombination rate and thus increase excitation densities within a material. Here we introduce a general framework to quantify photon recycling which can be applied to any material. We apply our model to idealized solar cells and light-emitting diodes based on halide perovskites. By varying controllable parameters which affect photon recycling, namely, thickness, charge trapping rate, nonideal transmission at interfaces, and absorptance, we quantify the effect of each on photon recycling. In both device types, we demonstrate that maximizing absorption and emission processes remains paramount for optimizing devices, even if this is at the expense of photon recycling. Our results provide new insight into quantifying photon recycling in optoelectronic devices and demonstrate that photon recycling cannot always be seen as a beneficial process.

摘要

近年来,随着卤化物钙钛矿中光子回收现象的发现,它受到了越来越多的关注。研究表明,光子回收可降低有效的双分子复合率,从而提高材料内部的激发密度。在此,我们引入了一个通用框架来量化光子回收,该框架可应用于任何材料。我们将模型应用于基于卤化物钙钛矿的理想化太阳能电池和发光二极管。通过改变影响光子回收的可控参数,即厚度、电荷俘获率、界面处的非理想传输和吸收率,我们量化了每个参数对光子回收的影响。在这两种器件类型中,我们证明,即使以牺牲光子回收为代价,最大化吸收和发射过程对于优化器件仍然至关重要。我们的结果为量化光电器件中的光子回收提供了新的见解,并表明光子回收并非总是有益的过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验