Suppr超能文献

用于神经元重建的3D深度网络的弱监督学习

Weakly Supervised Learning of 3D Deep Network for Neuron Reconstruction.

作者信息

Huang Qing, Chen Yijun, Liu Shijie, Xu Cheng, Cao Tingting, Xu Yongchao, Wang Xiaojun, Rao Gong, Li Anan, Zeng Shaoqun, Quan Tingwei

机构信息

Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China.

Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Front Neuroanat. 2020 Jul 28;14:38. doi: 10.3389/fnana.2020.00038. eCollection 2020.

Abstract

Digital reconstruction or tracing of 3D tree-like neuronal structures from optical microscopy images is essential for understanding the functionality of neurons and reveal the connectivity of neuronal networks. Despite the existence of numerous tracing methods, reconstructing a neuron from highly noisy images remains challenging, particularly for neurites with low and inhomogeneous intensities. Conducting deep convolutional neural network (CNN)-based segmentation prior to neuron tracing facilitates an approach to solving this problem via separation of weak neurites from a noisy background. However, large manual annotations are needed in deep learning-based methods, which is labor-intensive and limits the algorithm's generalization for different datasets. In this study, we present a weakly supervised learning method of a deep CNN for neuron reconstruction without manual annotations. Specifically, we apply a 3D residual CNN as the architecture for discriminative neuronal feature extraction. We construct the initial pseudo-labels (without manual segmentation) of the neuronal images on the basis of an existing automatic tracing method. A weakly supervised learning framework is proposed via iterative training of the CNN model for improved prediction and refining of the pseudo-labels to update training samples. The pseudo-label was iteratively modified via mining and addition of weak neurites from the CNN predicted probability map on the basis of their tubularity and continuity. The proposed method was evaluated on several challenging images from the public BigNeuron and Diadem datasets, to fMOST datasets. Owing to the adaption of 3D deep CNNs and weakly supervised learning, the presented method demonstrates effective detection of weak neurites from noisy images and achieves results similar to those of the CNN model with manual annotations. The tracing performance was significantly improved by the proposed method on both small and large datasets (>100 GB). Moreover, the proposed method proved to be superior to several novel tracing methods on original images. The results obtained on various large-scale datasets demonstrated the generalization and high precision achieved by the proposed method for neuron reconstruction.

摘要

从光学显微镜图像中对三维树状神经元结构进行数字重建或追踪,对于理解神经元的功能和揭示神经元网络的连接性至关重要。尽管存在众多追踪方法,但从高噪声图像中重建神经元仍然具有挑战性,特别是对于强度低且不均匀的神经突。在神经元追踪之前进行基于深度卷积神经网络(CNN)的分割,有助于通过将弱神经突与噪声背景分离来解决这个问题。然而,基于深度学习的方法需要大量手动标注,这既费力又限制了算法对不同数据集的通用性。在本研究中,我们提出了一种无需手动标注的深度CNN弱监督学习方法用于神经元重建。具体而言,我们应用三维残差CNN作为判别性神经元特征提取的架构。我们基于现有的自动追踪方法构建神经元图像的初始伪标签(无需手动分割)。通过对CNN模型进行迭代训练,提出了一个弱监督学习框架,以改进预测并细化伪标签来更新训练样本。基于其管状性和连续性,通过从CNN预测概率图中挖掘和添加弱神经突,对伪标签进行迭代修改。所提出的方法在来自公共BigNeuron和Diadem数据集以及fMOST数据集的几个具有挑战性的图像上进行了评估。由于采用了三维深度CNN和弱监督学习,所提出的方法展示了从噪声图像中有效检测弱神经突的能力,并取得了与带有手动标注的CNN模型相似的结果。所提出的方法在小型和大型数据集(>100GB)上均显著提高了追踪性能。此外,所提出的方法在原始图像上被证明优于几种新颖的追踪方法。在各种大规模数据集上获得的结果证明了所提出的神经元重建方法的通用性和高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b27/7399060/e39503c37f2a/fnana-14-00038-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验