Suppr超能文献

基于渐进学习的超大规模光学显微镜图像神经元群体重建。

Neuronal Population Reconstruction From Ultra-Scale Optical Microscopy Images via Progressive Learning.

出版信息

IEEE Trans Med Imaging. 2020 Dec;39(12):4034-4046. doi: 10.1109/TMI.2020.3009148. Epub 2020 Nov 30.

Abstract

Reconstruction of neuronal populations from ultra-scale optical microscopy (OM) images is essential to investigate neuronal circuits and brain mechanisms. The noises, low contrast, huge memory requirement, and high computational cost pose significant challenges in the neuronal population reconstruction. Recently, many studies have been conducted to extract neuron signals using deep neural networks (DNNs). However, training such DNNs usually relies on a huge amount of voxel-wise annotations in OM images, which are expensive in terms of both finance and labor. In this paper, we propose a novel framework for dense neuronal population reconstruction from ultra-scale images. To solve the problem of high cost in obtaining manual annotations for training DNNs, we propose a progressive learning scheme for neuronal population reconstruction (PLNPR) which does not require any manual annotations. Our PLNPR scheme consists of a traditional neuron tracing module and a deep segmentation network that mutually complement and progressively promote each other. To reconstruct dense neuronal populations from a terabyte-sized ultra-scale image, we introduce an automatic framework which adaptively traces neurons block by block and fuses fragmented neurites in overlapped regions continuously and smoothly. We build a dataset "VISoR-40" which consists of 40 large-scale OM image blocks from cortical regions of a mouse. Extensive experimental results on our VISoR-40 dataset and the public BigNeuron dataset demonstrate the effectiveness and superiority of our method on neuronal population reconstruction and single neuron reconstruction. Furthermore, we successfully apply our method to reconstruct dense neuronal populations from an ultra-scale mouse brain slice. The proposed adaptive block propagation and fusion strategies greatly improve the completeness of neurites in dense neuronal population reconstruction.

摘要

从超大规模光学显微镜 (OM) 图像重建神经元群体对于研究神经元回路和大脑机制至关重要。噪声、低对比度、巨大的内存需求和高计算成本给神经元群体重建带来了重大挑战。最近,许多研究已经使用深度神经网络 (DNN) 来提取神经元信号。然而,训练这种 DNN 通常依赖于 OM 图像中大量的体素注释,这在财务和劳动力方面都非常昂贵。在本文中,我们提出了一种从超大规模图像中重建密集神经元群体的新框架。为了解决在训练 DNN 时获取手动注释成本高昂的问题,我们提出了一种用于神经元群体重建的渐进式学习方案 (PLNPR),该方案不需要任何手动注释。我们的 PLNPR 方案由传统的神经元跟踪模块和深度分割网络组成,它们相互补充并相互促进。为了从 TB 级别的超大规模图像中重建密集的神经元群体,我们引入了一种自动框架,该框架自适应地逐块跟踪神经元,并连续、平滑地融合重叠区域中的碎片化神经突。我们构建了一个包含 40 个来自小鼠皮质区域的大型 OM 图像块的数据集“VISoR-40”。在我们的 VISoR-40 数据集和公共 BigNeuron 数据集上的广泛实验结果证明了我们的方法在神经元群体重建和单个神经元重建方面的有效性和优越性。此外,我们成功地将我们的方法应用于从超大规模的小鼠脑切片中重建密集的神经元群体。所提出的自适应块传播和融合策略大大提高了密集神经元群体重建中神经突的完整性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验