Mothes Janina, Ipenberg Inbal, Arslan Seda Çöl, Benary Uwe, Scheidereit Claus, Wolf Jana
Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Signal Transduction in Tumor Cells, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Front Physiol. 2020 Jul 28;11:896. doi: 10.3389/fphys.2020.00896. eCollection 2020.
Signaling pathways involve complex molecular interactions and are controled by non-linear regulatory mechanisms. If details of regulatory mechanisms are not fully elucidated, they can be implemented by different, equally reasonable mathematical representations in computational models. The study presented here focusses on NF-κB signaling, which is regulated by negative feedbacks via IκBα and A20. A20 inhibits NF-κB activation indirectly through interference with proteins that transduce the signal from the TNF receptor complex to activate the IκB kinase (IKK) complex. A number of pathway models has been developed implementing the A20 effect in different ways. We here focus on the question how different A20 feedback implementations impact the dynamics of NF-κB. To this end, we develop a modular modeling approach that allows combining previously published A20 modules with a common pathway core module. The resulting models are fitted to a published comprehensive experimental data set and therefore show quantitatively comparable NF-κB dynamics. Based on defined measures for the initial and long-term behavior we analyze the effects of a wide range of changes in the A20 feedback strength, the IκBα feedback strength and the TNFα stimulation strength on NF-κB dynamics. This shows similarities between the models but also model-specific differences. In particular, the A20 feedback strength and the TNFα stimulation strength affect initial and long-term NF-κB concentrations differently in the analyzed models. We validated our model predictions experimentally by varying TNFα concentrations applied to HeLa cells. These time course data indicate that only one of the A20 feedback models appropriately describes the impact of A20 on the NF-κB dynamics in this cell type.
信号通路涉及复杂的分子相互作用,并受非线性调节机制控制。如果调节机制的细节没有完全阐明,它们可以在计算模型中由不同的、同样合理的数学表示来实现。本文介绍的研究聚焦于核因子κB(NF-κB)信号通路,该通路通过IκBα和A20的负反馈进行调节。A20通过干扰将信号从肿瘤坏死因子(TNF)受体复合物传递以激活IκB激酶(IKK)复合物的蛋白质,间接抑制NF-κB激活。已经开发了许多以不同方式实现A20效应的通路模型。我们在此关注不同的A20反馈实现方式如何影响NF-κB的动力学。为此,我们开发了一种模块化建模方法,该方法允许将先前发表的A20模块与一个通用的通路核心模块相结合。所得模型与已发表的综合实验数据集拟合,因此显示出定量可比的NF-κB动力学。基于对初始和长期行为的定义测量,我们分析了A20反馈强度、IκBα反馈强度和TNFα刺激强度的广泛变化对NF-κB动力学的影响。这显示了模型之间的相似性,但也有模型特异性差异。特别是,在所分析的模型中,A20反馈强度和TNFα刺激强度对初始和长期NF-κB浓度的影响不同。我们通过改变应用于HeLa细胞的TNFα浓度,对我们的模型预测进行了实验验证。这些时间进程数据表明,在所分析的细胞类型中,只有一种A20反馈模型恰当地描述了A20对NF-κB动力学的影响。