Nabuco Leva Ferreira de Freitas José Américo, Bischof Oliver
IMRB, Mondor Institute for Biomedical Research, INSERM U955 - Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil.
Sorbonne Université, UMR 8256, Biological Adaptation and Ageing B2A-IBPS, F-75005, Paris, France.
Heliyon. 2023 Feb 25;9(3):e14007. doi: 10.1016/j.heliyon.2023.e14007. eCollection 2023 Mar.
Cellular senescence is a cell fate that prominently impacts physiological and pathophysiological processes. Diverse cellular stresses induce it, and dramatic gene expression changes accompany it. However, determining the interactions comprising the gene regulatory network (GRN) governing senescence remains challenging. Recent advances in signal processing techniques provide opportunities to reconstruct GRNs. Here, we describe a GRN for senescence integrating time-series transcriptome and transcription factor depletion datasets. Specifically, we infer a set of differential equations using the "Sparse Identification of Nonlinear Dynamics" (SINDy) algorithm, discriminate genes with potential hidden regulators, validate the inferred GRN for time-points not included in the training data, and comprehensively benchmark our approach. Our work is a proof of concept for a data-driven GRN reconstruction method, consolidating an iterative, powerful mathematical platform for senescence modeling that can be used to test hypotheses and has the potential for future discoveries of clinical impact.
细胞衰老作为一种细胞命运,对生理和病理生理过程有着显著影响。多种细胞应激可诱导细胞衰老,同时伴随着显著的基因表达变化。然而,确定构成衰老调控基因调控网络(GRN)的相互作用仍然具有挑战性。信号处理技术的最新进展为重建基因调控网络提供了机会。在此,我们描述了一个整合时间序列转录组和转录因子缺失数据集的衰老基因调控网络。具体而言,我们使用“非线性动力学的稀疏识别”(SINDy)算法推断出一组微分方程,识别具有潜在隐藏调节因子的基因,针对未包含在训练数据中的时间点验证推断出的基因调控网络,并全面评估我们的方法。我们的工作是一种数据驱动的基因调控网络重建方法的概念验证,巩固了一个用于衰老建模的迭代、强大的数学平台,该平台可用于检验假设,并有可能在未来发现具有临床意义的结果。