Hatibaruah Rakcinpha, Nath Vijay Kumar, Hazarika Deepika
Department of Electronics and Communication Engineering, Tezpur University, Tezpur, India.
Biomed Eng Lett. 2020 Jul 30;10(3):345-357. doi: 10.1007/s13534-020-00163-8. eCollection 2020 Aug.
In this letter, a new feature descriptor called three dimensional local oriented zigzag ternary co-occurrence fused pattern ( ) is proposed for computed tomography (CT) image retrieval. Unlike the conventional local pattern based approaches, where the relationship between the reference and its neighbors in a circular shaped neighborhood are captured in a 2-D plane, the proposed descriptor encodes the relationship between the reference and it's neighbors within a local 3D block drawn from multiscale Gaussian filtered images employing a new 3D zigzag sampling structure. The proposed 3D zigzag scan around a reference not only provides an effective texture representation by capturing non-uniform and uniform local texture patterns but the fine to coarse details are also captured via multiscale Gaussian filtered images. In this letter, we have introduced three unique 3D zigzag patterns in four diverse directions. In , we first calculate the 3D local ternary pattern within a local 3D block around a reference using proposed 3D zigzag sampling structure at both radius 1 and 2. Then the co-occurrence of similar ternary edges within the local 3D cube is computed to further enhance the discriminative power of the descriptor. A quantization and fusion based scheme is introduced to reduce the feature dimension of the proposed descriptor. Experiments are conducted on popular NEMA and TCIA-CT image databases and the results demonstrate superior retrieval efficiency of the proposed descriptor over many local pattern based approaches in terms of average retrieval precision and average retrieval recall in CT image retrieval.
在这封信中,我们提出了一种名为三维局部定向之字形三元共现融合模式( )的新特征描述符,用于计算机断层扫描(CT)图像检索。与传统的基于局部模式的方法不同,传统方法在二维平面中捕捉圆形邻域内参考点与其邻居之间的关系,而所提出的描述符采用新的三维之字形采样结构,对从多尺度高斯滤波图像中提取的局部三维块内参考点与其邻居之间的关系进行编码。围绕参考点提出的三维之字形扫描不仅通过捕捉非均匀和均匀的局部纹理模式提供了有效的纹理表示,而且还通过多尺度高斯滤波图像捕捉了从精细到粗糙的细节。在这封信中,我们在四个不同方向上引入了三种独特的三维之字形模式。在 中,我们首先使用所提出的三维之字形采样结构在半径1和2处围绕参考点计算局部三维块内的三维局部三元模式。然后计算局部三维立方体内相似三元边缘的共现,以进一步增强描述符的判别能力。引入了一种基于量化和融合的方案来降低所提出描述符的特征维度。在流行的NEMA和TCIA-CT图像数据库上进行了实验,结果表明,在所提出的描述符在CT图像检索中的平均检索精度和平均检索召回率方面,优于许多基于局部模式的方法。