Department of Electronics and Communication Engineering, School of Engineering, Tezpur University, Napaam, Tezpur, Assam 784028, India.
Math Biosci Eng. 2022 Jan;19(2):1609-1632. doi: 10.3934/mbe.2022075. Epub 2021 Dec 13.
This paper introduces a novel descriptor non-subsampled shearlet transform (NSST) local bit-plane neighbour dissimilarity pattern (NSST-LBNDP) for biomedical image retrieval based on NSST, bit-plane slicing and local pattern based features. In NSST-LBNDP, the input image is first decomposed by NSST, followed by introduction of non-linearity on the NSST coefficients by computing local energy features. The local energy features are next normalized into 8-bit values. The multiscale NSST is used to provide translational invariance and has flexible directional sensitivity to catch more anisotropic information of an image. The normalised NSST subband features are next decomposed into bit-plane slices in order to capture very fine to coarse subband details. Then each bit-plane slices of all the subbands are encoded by exploiting the dissimilarity relationship between each neighbouring pixel and its adjacent neighbours. Experiments on two computed tomography (CT) and one magnetic resonance imaging (MRI) image datasets confirms the superior results of NSST-LBNDP when compared to many recent well known relevant descriptors both in terms of average retrieval precision (ARP) and average retrieval recall (ARR).
本文提出了一种新的基于非下采样剪切波变换(NSST)的医学图像检索描述符——NSST 局部位平面邻域不相似模式(NSST-LBNDP)。该方法基于 NSST、位平面切片和局部模式特征。在 NSST-LBNDP 中,首先对输入图像进行 NSST 分解,然后通过计算局部能量特征对 NSST 系数进行非线性处理。接下来,将局部能量特征归一化为 8 位值。多尺度 NSST 用于提供平移不变性,并具有灵活的方向敏感性,以捕获图像的更多各向异性信息。接下来,将归一化的 NSST 子带特征分解为位平面切片,以捕获非常精细到粗糙的子带细节。然后,通过利用每个像素与其相邻像素之间的差异关系,对所有子带的每个位平面切片进行编码。在两个计算机断层扫描(CT)和一个磁共振成像(MRI)图像数据集上的实验表明,与许多最近著名的相关描述符相比,NSST-LBNDP 在平均检索精度(ARP)和平均检索召回率(ARR)方面都具有更好的性能。