Suppr超能文献

基于新型高效局部邻域小波特征描述符的基于内容的医学图像检索

Content based medical image retrieval based on new efficient local neighborhood wavelet feature descriptor.

作者信息

Shinde Amita, Rahulkar Amol, Patil Chetankumar

机构信息

1Instrumentation and Control, College of Engineering Pune, Pune, India.

Electrical and Electronics Engineering, National Institute of Technology Goa, Farmagudi, India.

出版信息

Biomed Eng Lett. 2019 May 6;9(3):387-394. doi: 10.1007/s13534-019-00112-0. eCollection 2019 Aug.

Abstract

This paper presents a new class of local neighborhood based wavelet feature descriptor (LNWFD) for content based medical image retrieval (CBMIR). To retrieve images effectively from large medical databases is backbone of diagnosis. Existing wavelet transform based medical image retrieval methods suffer from high length feature vector with confined retrieval performance. Triplet half-band filter bank (THFB) enhanced the properties of wavelet filters using three kernels. The influence of THFB has employed in the proposed method. First, triplet half-band filter bank (THFB) is used for single level wavelet decomposition to obtain four sub-bands. Next, the relationship among wavelet coefficients is exploited at each sub-band using 3 × 3 neighborhood window to form LNWFD pattern. The novelty of the proposed descriptor lies in exploring relation between wavelet transform values of pixels rather than intensity values which gives more detail local information in wavelet sub-bands. Thus, proposed feature descriptor is robust against illumination. Manhattan distance is used to compute similarity between query feature vector and feature vector of database. The proposed method is tested for medical image retrieval using OASIS-MRI, NEMA-CT, and Emphysema-CT databases. The average retrieval precisions achieved are 71.45%, 99.51% of OASIS-MRI and NEMA-CT databases for top ten matches considered respectively and 55.51% of Emphysema-CT database for top 50 matches. The superiority in terms of performance of the proposed method is confirmed by the experimental results over the well-known existing descriptors.

摘要

本文提出了一种用于基于内容的医学图像检索(CBMIR)的新型局部邻域小波特征描述符(LNWFD)。从大型医学数据库中有效检索图像是诊断的核心。现有的基于小波变换的医学图像检索方法存在特征向量长度大且检索性能受限的问题。三重半带滤波器组(THFB)使用三个内核增强了小波滤波器的特性。该方法中采用了THFB的影响。首先,使用三重半带滤波器组(THFB)进行单级小波分解以获得四个子带。接下来,在每个子带使用3×3邻域窗口利用小波系数之间的关系来形成LNWFD模式。所提出描述符的新颖之处在于探索像素的小波变换值之间的关系而非强度值,这在小波子带中给出了更详细的局部信息。因此,所提出的特征描述符对光照具有鲁棒性。使用曼哈顿距离来计算查询特征向量与数据库特征向量之间的相似度。所提出的方法使用OASIS - MRI、NEMA - CT和肺气肿 - CT数据库进行医学图像检索测试。对于分别考虑的前十匹配项,所实现的平均检索精度在OASIS - MRI和NEMA - CT数据库中分别为71.45%、99.51%,对于肺气肿 - CT数据库前50匹配项为55.51%。实验结果证实了所提出方法在性能方面优于著名的现有描述符。

相似文献

1
Content based medical image retrieval based on new efficient local neighborhood wavelet feature descriptor.
Biomed Eng Lett. 2019 May 6;9(3):387-394. doi: 10.1007/s13534-019-00112-0. eCollection 2019 Aug.
2
Local Wavelet Pattern: A New Feature Descriptor for Image Retrieval in Medical CT Databases.
IEEE Trans Image Process. 2015 Dec;24(12):5892-903. doi: 10.1109/TIP.2015.2493446. Epub 2015 Oct 26.
3
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
J Med Syst. 2018 Jan 25;42(3):44. doi: 10.1007/s10916-017-0880-7.
4
RbQE: An Efficient Method for Content-Based Medical Image Retrieval Based on Query Expansion.
J Digit Imaging. 2023 Jun;36(3):1248-1261. doi: 10.1007/s10278-022-00769-7. Epub 2023 Jan 26.
6
3D-local oriented zigzag ternary co-occurrence fused pattern for biomedical CT image retrieval.
Biomed Eng Lett. 2020 Jul 30;10(3):345-357. doi: 10.1007/s13534-020-00163-8. eCollection 2020 Aug.
7
Directional binary wavelet patterns for biomedical image indexing and retrieval.
J Med Syst. 2012 Oct;36(5):2865-79. doi: 10.1007/s10916-011-9764-4. Epub 2011 Aug 6.
8
Interactive radiographic image retrieval system.
Comput Methods Programs Biomed. 2017 Feb;139:209-220. doi: 10.1016/j.cmpb.2016.10.023. Epub 2016 Dec 14.
10
Wavelet optimization for content-based image retrieval in medical databases.
Med Image Anal. 2010 Apr;14(2):227-41. doi: 10.1016/j.media.2009.11.004. Epub 2009 Dec 14.

引用本文的文献

1
ST-CellSeg: Cell segmentation for imaging-based spatial transcriptomics using multi-scale manifold learning.
PLoS Comput Biol. 2024 Jun 27;20(6):e1012254. doi: 10.1371/journal.pcbi.1012254. eCollection 2024 Jun.
2
Content-Based Medical Image Retrieval System for Skin Melanoma Diagnosis Based on Optimized Pair-Wise Comparison Approach.
J Digit Imaging. 2023 Feb;36(1):45-58. doi: 10.1007/s10278-022-00710-y. Epub 2022 Oct 17.
3
An efficient image descriptor for image classification and CBIR.
Optik (Stuttg). 2020 Jul;214:164833. doi: 10.1016/j.ijleo.2020.164833. Epub 2020 May 4.

本文引用的文献

1
Local Wavelet Pattern: A New Feature Descriptor for Image Retrieval in Medical CT Databases.
IEEE Trans Image Process. 2015 Dec;24(12):5892-903. doi: 10.1109/TIP.2015.2493446. Epub 2015 Oct 26.
2
Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval.
IEEE J Biomed Health Inform. 2014 May;18(3):929-38. doi: 10.1109/JBHI.2013.2288522. Epub 2013 Nov 4.
3
Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data.
J Digit Imaging. 2013 Dec;26(6):1025-39. doi: 10.1007/s10278-013-9619-2.
4
Local tetra patterns: a new feature descriptor for content-based image retrieval.
IEEE Trans Image Process. 2012 May;21(5):2874-86. doi: 10.1109/TIP.2012.2188809.
5
Fast wavelet-based image characterization for highly adaptive image retrieval.
IEEE Trans Image Process. 2012 Apr;21(4):1613-23. doi: 10.1109/TIP.2011.2180915. Epub 2011 Dec 21.
6
Directional binary wavelet patterns for biomedical image indexing and retrieval.
J Med Syst. 2012 Oct;36(5):2865-79. doi: 10.1007/s10916-011-9764-4. Epub 2011 Aug 6.
7
Optimal design of FIR triplet halfband filter bank and application in image coding.
IEEE Trans Image Process. 2011 Feb;20(2):586-91. doi: 10.1109/TIP.2010.2059450. Epub 2010 Jul 19.
8
Local structure-based region-of-interest retrieval in brain MR images.
IEEE Trans Inf Technol Biomed. 2010 Jul;14(4):897-903. doi: 10.1109/TITB.2009.2038152. Epub 2010 Jan 8.
9
Wavelet optimization for content-based image retrieval in medical databases.
Med Image Anal. 2010 Apr;14(2):227-41. doi: 10.1016/j.media.2009.11.004. Epub 2009 Dec 14.
10
A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.
IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):30-44. doi: 10.1109/TPAMI.2008.273.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验