Suppr超能文献

基于局部网格向量共现模式的MRI脑图像医学诊断图像检索

Image Retrieval Based on Local Mesh Vector Co-occurrence Pattern for Medical Diagnosis from MRI Brain Images.

作者信息

Jenitta A, Samson Ravindran R

机构信息

Department of Electronics and Communication Engineering, Idhaya Engineering College For Women, Villupuram (Dt), Chinnasalem, Tamilnadu, 606 201, India.

Department of Electronics and Communication Engineering, Mahendra Engineering College, Namakkal(Dt), Mallasamuthram, Tamilnadu, India.

出版信息

J Med Syst. 2017 Aug 31;41(10):157. doi: 10.1007/s10916-017-0799-z.

Abstract

In modern health-care, for evidence-based diagnosis, there is a requirement for an efficient image retrieval approach to retrieve the cases of interest that have similar characteristics from the large image databases. This paper presents a feature extraction approach that aims at extracting texture features present in the medical images using Local Pattern Descriptor (LPD) and Gray-level Co-occurrence Matrix (GLCM). As a main contribution, a novel local pattern named Local Mesh Vector Co-occurrence Pattern (LMVCoP) has been proposed by concatenating the Local Mesh Co-occurrence Pattern (LMCoP) and the Local Vector Co-occurrence Pattern (LVCoP). The fusion of GLCM with the Local Mesh Pattern (LMeP) and the Local Vector Pattern (LVP) produces LMCoP and LVCoP respectively. The LMVCoP method has been investigated on the Open Access Series of Imaging Studies (OASIS): a Magnetic Resonance Imaging (MRI) brain image database. LMVCoP descriptor achieves 87.57% of ARP and 53.21% of ARR which are higher than the existing methods of LTCoP, PVEP, LBDP, LMeP and LVP. The LMVCoP method enhances the retrieval results of LMeP/LVP from 81.36%/83.52% to 87.57% in terms of ARP on OASIS MRI brain database.

摘要

在现代医疗保健中,为了进行基于证据的诊断,需要一种高效的图像检索方法,以便从大型图像数据库中检索具有相似特征的感兴趣病例。本文提出了一种特征提取方法,旨在使用局部模式描述符(LPD)和灰度共生矩阵(GLCM)提取医学图像中存在的纹理特征。作为主要贡献,通过将局部网格共生模式(LMCoP)和局部向量共生模式(LVCoP)连接起来,提出了一种名为局部网格向量共生模式(LMVCoP)的新型局部模式。GLCM与局部网格模式(LMeP)和局部向量模式(LVP)的融合分别产生了LMCoP和LVCoP。已在开放获取影像研究系列(OASIS):一个磁共振成像(MRI)脑图像数据库上对LMVCoP方法进行了研究。LMVCoP描述符实现了87.57%的平均检索精度(ARP)和53.21%的平均检索召回率(ARR),高于现有方法局部张量共生模式(LTCoP)、相位不变边缘模式(PVEP)、局部块方向模式(LBDP)、局部网格模式(LMeP)和局部向量模式(LVP)。在OASIS MRI脑数据库上,就ARP而言,LMVCoP方法将LMeP/LVP的检索结果从81.36%/83.52%提高到了87.57%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验