Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.
J Physiol. 2020 Dec;598(23):5467-5485. doi: 10.1113/JP280274. Epub 2020 Sep 16.
Many mammals are born with immature motor systems that develop through a critical period of postnatal development. In rodents, postnatal maturation of movement occurs from rostral to caudal, correlating with maturation of descending supraspinal and local spinal circuits. We asked whether development of fundamental electrophysiological properties of spinal motoneurons follows the same rostro-caudal sequence. We show that in both regions, repetitive firing parameters increase and excitability decreases with development; however, these characteristics mature earlier in cervical motoneurons. We suggest that in addition to autonomous mechanisms, motoneuron development depends on activity resulting from their circuit milieu.
Altricial mammals are born with immature nervous systems comprised of circuits that do not yet have the neuronal properties and connectivity required to produce future behaviours. During the critical period of postnatal development, neuronal properties are tuned to participate in functional circuits. In rodents, cervical motoneurons are born prior to lumbar motoneurons, and spinal cord development follows a sequential rostro-caudal pattern. Here we asked whether birth order is reflected in the postnatal development of electrophysiological properties. We show that motoneurons of both regions have similar properties at birth and follow the same developmental profile, with maximal firing increasing and excitability decreasing into the third postnatal week. However, these maturative processes occur in cervical motoneurons prior to lumbar motoneurons, correlating with the maturation of premotor descending and local spinal systems. These results suggest that motoneuron properties do not mature by cell autonomous mechanisms alone, but also depend on developing premotor circuits.
许多哺乳动物出生时运动系统尚未发育成熟,它们会在出生后的关键发育期逐渐成熟。在啮齿类动物中,运动的后天成熟是从头端到尾端进行的,与下行至上运动神经元和局部脊髓回路的成熟相对应。我们想知道脊髓运动神经元的基本电生理特性的发育是否遵循相同的头尾顺序。我们发现,在这两个区域,重复放电参数随着发育而增加,兴奋性降低;然而,这些特征在颈段运动神经元中更早成熟。我们认为,除了自主机制外,运动神经元的发育还依赖于其回路环境产生的活动。
早产哺乳动物出生时神经系统尚未发育成熟,其回路中不具备产生未来行为所需的神经元特性和连接性。在出生后的关键发育期,神经元特性会被调整以参与功能性回路。在啮齿类动物中,颈段运动神经元比腰段运动神经元更早产生,脊髓发育遵循顺序的头尾模式。在这里,我们想知道出生顺序是否反映在运动神经元电生理特性的后天发育中。我们发现,这两个区域的运动神经元在出生时具有相似的特性,并且遵循相同的发育模式,最大放电增加,兴奋性在第三周后降低。然而,这些成熟过程发生在颈段运动神经元中,早于腰段运动神经元,与运动前的下行和局部脊髓系统的成熟相对应。这些结果表明,运动神经元的特性不仅仅通过细胞自主机制成熟,还依赖于发育中的运动前回路。