Suppr超能文献

利用尿素的表面工程策略提高钠离子电池中Na₂Ti₃O₇的倍率性能

Surface Engineering Strategy Using Urea To Improve the Rate Performance of Na Ti O in Na-Ion Batteries.

作者信息

Costa Sara I R, Choi Yong-Seok, Fielding Alistair J, Naylor Andrew J, Griffin John M, Sofer Zdeněk, Scanlon David O, Tapia-Ruiz Nuria

机构信息

Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.

The Faraday Institution, Harwell Campus, Didcot, OX11 0RA, UK.

出版信息

Chemistry. 2021 Feb 19;27(11):3875-3886. doi: 10.1002/chem.202003129. Epub 2021 Jan 14.

Abstract

Na Ti O (NTO) is considered a promising anode material for Na-ion batteries due to its layered structure with an open framework and low and safe average operating voltage of 0.3 V vs. Na /Na. However, its poor electronic conductivity needs to be addressed to make this material attractive for practical applications among other anode choices. Here, we report a safe, controllable and affordable method using urea that significantly improves the rate performance of NTO by producing surface defects such as oxygen vacancies and hydroxyl groups, and the secondary phase Na Ti O . The enhanced electrochemical performance agrees with the higher Na ion diffusion coefficient, higher charge carrier density and reduced bandgap observed in these samples, without the need of nanosizing and/or complex synthetic strategies. A comprehensive study using a combination of diffraction, microscopic, spectroscopic and electrochemical techniques supported by computational studies based on DFT calculations, was carried out to understand the effects of this treatment on the surface, chemistry and electronic and charge storage properties of NTO. This study underscores the benefits of using urea as a strategy for enhancing the charge storage properties of NTO and thus, unfolding the potential of this material in practical energy storage applications.

摘要

NaTi₂O₅(NTO)因其具有开放框架的层状结构以及相对于Na⁺/Na而言低且安全的平均工作电压0.3 V,被认为是一种有前景的钠离子电池负极材料。然而,其较差的电子导电性需要解决,以使该材料在其他负极选择中对实际应用具有吸引力。在此,我们报道了一种使用尿素的安全、可控且经济实惠的方法,该方法通过产生诸如氧空位和羟基等表面缺陷以及第二相Na₂Ti₃O₇,显著提高了NTO的倍率性能。增强的电化学性能与在这些样品中观察到的更高的Na⁺离子扩散系数、更高的电荷载流子密度和减小的带隙相一致,而无需纳米尺寸化和/或复杂的合成策略。结合基于密度泛函理论(DFT)计算的计算研究,使用衍射、显微镜、光谱和电化学技术的组合进行了全面研究,以了解这种处理对NTO的表面、化学以及电子和电荷存储性能的影响。这项研究强调了使用尿素作为增强NTO电荷存储性能的策略的益处,从而揭示了这种材料在实际储能应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c25/7986851/d13e810d544f/CHEM-27-3875-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验