Suppr超能文献

通过独特的化学键合界面机制制备长循环寿命钠离子电池

Long-Cycle-Life Sodium-Ion Battery Fabrication via a Unique Chemical Bonding Interface Mechanism.

作者信息

Meng Weijia, Dang Zhenzhen, Li Diansen, Jiang Lei

机构信息

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China.

Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.

出版信息

Adv Mater. 2023 Jul;35(30):e2301376. doi: 10.1002/adma.202301376. Epub 2023 Jun 6.

Abstract

Titanates have been widely reported as anode materials for sodium-ion batteries (SIBs). However, their wide temperature suitability and cycle life remain fundamental issues that hinder their practical application. Herein, a novel hollow Na Ti O microsphere (H-NTO) with a unique chemically bonded NTO/C(N) interface is reported. Theoretical calculations demonstrated that the NTO/C(N) interface stabilizes the crystal structure, and the optimized interface enables the H-NTO anode to stably operate for 80 000 cycles in a conventional ester electrolyte with negligible capacity loss. Optimizing the electrolyte allows the H-NTO electrode to cycle stably for 200 calendar days without capacity degradation at -40 °C. The excellent cycling stability is attributed to the NTO/C(N) interface and the stable solid electrolyte interphase formed by the highly adaptable electrolyte/electrode interface. Titanate exhibits solvent co-intercalation behavior in ether-based electrolytes, and its robust structure ensures that it can adapt to large volume changes at low temperatures. This study provides a unique perspective on the long-cycle mechanism of titanate anodes and highlights the critical importance of manipulating the interfacial chemistry in SIBs, including the material and electrode/electrolyte interfaces.

摘要

钛酸盐作为钠离子电池(SIBs)的负极材料已被广泛报道。然而,它们的广泛温度适用性和循环寿命仍然是阻碍其实际应用的基本问题。在此,报道了一种具有独特化学键合的NTO/C(N)界面的新型中空NaTi O微球(H-NTO)。理论计算表明,NTO/C(N)界面稳定了晶体结构,优化后的界面使H-NTO负极在传统酯类电解质中能够稳定循环80000次,容量损失可忽略不计。优化电解质后,H-NTO电极在-40℃下可稳定循环200个日历日而不发生容量衰减。优异的循环稳定性归因于NTO/C(N)界面以及由高度适应性的电解质/电极界面形成的稳定固体电解质界面。钛酸盐在醚基电解质中表现出溶剂共嵌入行为,其坚固的结构确保它能适应低温下的大体积变化。这项研究为钛酸盐负极的长循环机制提供了独特的视角,并突出了在钠离子电池中调控界面化学的关键重要性,包括材料以及电极/电解质界面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验